Cargando…
Dual-energy three-compartment breast imaging for compositional biomarkers to improve detection of malignant lesions
BACKGROUND: While breast imaging such as full-field digital mammography and digital breast tomosynthesis have helped to reduced breast cancer mortality, issues with low specificity exist resulting in unnecessary biopsies. The fundamental information used in diagnostic decisions are primarily based i...
Autores principales: | Leong, Lambert T., Malkov, Serghei, Drukker, Karen, Niell, Bethany L., Sadowski, Peter, Wolfgruber, Thomas, Greenwood, Heather I., Joe, Bonnie N., Kerlikowske, Karla, Giger, Maryellen L., Shepherd, John A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053198/ https://www.ncbi.nlm.nih.gov/pubmed/35602210 http://dx.doi.org/10.1038/s43856-021-00024-0 |
Ejemplares similares
-
Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: a case-case study
por: Hinton, Benjamin, et al.
Publicado: (2019) -
Performance metric curve analysis framework to assess impact of the decision variable threshold, disease prevalence, and dataset variability in two-class classification
por: Whitney, Heather M., et al.
Publicado: (2022) -
Role of standard and soft tissue chest radiography images in deep-learning-based early diagnosis of COVID-19
por: Hu, Qiyuan, et al.
Publicado: (2021) -
Agreement of Mammographic Measures of Volumetric Breast Density to MRI
por: Wang, Jeff, et al.
Publicado: (2013) -
Deep learning predicts all-cause mortality from longitudinal total-body DXA imaging
por: Glaser, Yannik, et al.
Publicado: (2022)