Cargando…

Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth

BACKGROUND: Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. METHODS: Herein, we used an integrative computational-experimental app...

Descripción completa

Detalles Bibliográficos
Autores principales: Blum, Kevin M., Zbinden, Jacob C., Ramachandra, Abhay B., Lindsey, Stephanie E., Szafron, Jason M., Reinhardt, James W., Heitkemper, Megan, Best, Cameron A., Mirhaidari, Gabriel J. M., Chang, Yu-Chun, Ulziibayar, Anudari, Kelly, John, Shah, Kejal V., Drews, Joseph D., Zakko, Jason, Miyamoto, Shinka, Matsuzaki, Yuichi, Iwaki, Ryuma, Ahmad, Hira, Daulton, Robbie, Musgrave, Drew, Wiet, Matthew G., Heuer, Eric, Lawson, Emily, Schwarz, Erica, McDermott, Michael R., Krishnamurthy, Rajesh, Krishnamurthy, Ramkumar, Hor, Kan, Armstrong, Aimee K., Boe, Brian A., Berman, Darren P., Trask, Aaron J., Humphrey, Jay D., Marsden, Alison L., Shinoka, Toshiharu, Breuer, Christopher K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053249/
https://www.ncbi.nlm.nih.gov/pubmed/35603301
http://dx.doi.org/10.1038/s43856-021-00063-7
_version_ 1784696957284909056
author Blum, Kevin M.
Zbinden, Jacob C.
Ramachandra, Abhay B.
Lindsey, Stephanie E.
Szafron, Jason M.
Reinhardt, James W.
Heitkemper, Megan
Best, Cameron A.
Mirhaidari, Gabriel J. M.
Chang, Yu-Chun
Ulziibayar, Anudari
Kelly, John
Shah, Kejal V.
Drews, Joseph D.
Zakko, Jason
Miyamoto, Shinka
Matsuzaki, Yuichi
Iwaki, Ryuma
Ahmad, Hira
Daulton, Robbie
Musgrave, Drew
Wiet, Matthew G.
Heuer, Eric
Lawson, Emily
Schwarz, Erica
McDermott, Michael R.
Krishnamurthy, Rajesh
Krishnamurthy, Ramkumar
Hor, Kan
Armstrong, Aimee K.
Boe, Brian A.
Berman, Darren P.
Trask, Aaron J.
Humphrey, Jay D.
Marsden, Alison L.
Shinoka, Toshiharu
Breuer, Christopher K.
author_facet Blum, Kevin M.
Zbinden, Jacob C.
Ramachandra, Abhay B.
Lindsey, Stephanie E.
Szafron, Jason M.
Reinhardt, James W.
Heitkemper, Megan
Best, Cameron A.
Mirhaidari, Gabriel J. M.
Chang, Yu-Chun
Ulziibayar, Anudari
Kelly, John
Shah, Kejal V.
Drews, Joseph D.
Zakko, Jason
Miyamoto, Shinka
Matsuzaki, Yuichi
Iwaki, Ryuma
Ahmad, Hira
Daulton, Robbie
Musgrave, Drew
Wiet, Matthew G.
Heuer, Eric
Lawson, Emily
Schwarz, Erica
McDermott, Michael R.
Krishnamurthy, Rajesh
Krishnamurthy, Ramkumar
Hor, Kan
Armstrong, Aimee K.
Boe, Brian A.
Berman, Darren P.
Trask, Aaron J.
Humphrey, Jay D.
Marsden, Alison L.
Shinoka, Toshiharu
Breuer, Christopher K.
author_sort Blum, Kevin M.
collection PubMed
description BACKGROUND: Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. METHODS: Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models. RESULTS: Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks. Our models predict that early neotissue accumulation is driven primarily by inflammatory processes in response to the implanted polymeric scaffold, but that turnover becomes progressively mechano-mediated as the scaffold degrades. Using a lamb model, we confirm that early neotissue formation results primarily from the foreign body reaction induced by the scaffold, resulting in an early period of dynamic remodeling characterized by transient TEVG narrowing. As the scaffold degrades, mechano-mediated neotissue remodeling becomes dominant around 26 weeks. After the scaffold degrades completely, the resulting neovessel undergoes growth and remodeling that mimicks native vessel behavior, including biological growth capacity, further supported by fluid–structure interaction simulations providing detailed hemodynamic and wall stress information. CONCLUSIONS: These findings provide insights into TEVG remodeling, and have important implications for clinical use and future development of TEVGs for children with congenital heart disease.
format Online
Article
Text
id pubmed-9053249
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-90532492022-05-20 Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth Blum, Kevin M. Zbinden, Jacob C. Ramachandra, Abhay B. Lindsey, Stephanie E. Szafron, Jason M. Reinhardt, James W. Heitkemper, Megan Best, Cameron A. Mirhaidari, Gabriel J. M. Chang, Yu-Chun Ulziibayar, Anudari Kelly, John Shah, Kejal V. Drews, Joseph D. Zakko, Jason Miyamoto, Shinka Matsuzaki, Yuichi Iwaki, Ryuma Ahmad, Hira Daulton, Robbie Musgrave, Drew Wiet, Matthew G. Heuer, Eric Lawson, Emily Schwarz, Erica McDermott, Michael R. Krishnamurthy, Rajesh Krishnamurthy, Ramkumar Hor, Kan Armstrong, Aimee K. Boe, Brian A. Berman, Darren P. Trask, Aaron J. Humphrey, Jay D. Marsden, Alison L. Shinoka, Toshiharu Breuer, Christopher K. Commun Med (Lond) Article BACKGROUND: Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. METHODS: Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models. RESULTS: Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks. Our models predict that early neotissue accumulation is driven primarily by inflammatory processes in response to the implanted polymeric scaffold, but that turnover becomes progressively mechano-mediated as the scaffold degrades. Using a lamb model, we confirm that early neotissue formation results primarily from the foreign body reaction induced by the scaffold, resulting in an early period of dynamic remodeling characterized by transient TEVG narrowing. As the scaffold degrades, mechano-mediated neotissue remodeling becomes dominant around 26 weeks. After the scaffold degrades completely, the resulting neovessel undergoes growth and remodeling that mimicks native vessel behavior, including biological growth capacity, further supported by fluid–structure interaction simulations providing detailed hemodynamic and wall stress information. CONCLUSIONS: These findings provide insights into TEVG remodeling, and have important implications for clinical use and future development of TEVGs for children with congenital heart disease. Nature Publishing Group UK 2022-01-10 /pmc/articles/PMC9053249/ /pubmed/35603301 http://dx.doi.org/10.1038/s43856-021-00063-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Blum, Kevin M.
Zbinden, Jacob C.
Ramachandra, Abhay B.
Lindsey, Stephanie E.
Szafron, Jason M.
Reinhardt, James W.
Heitkemper, Megan
Best, Cameron A.
Mirhaidari, Gabriel J. M.
Chang, Yu-Chun
Ulziibayar, Anudari
Kelly, John
Shah, Kejal V.
Drews, Joseph D.
Zakko, Jason
Miyamoto, Shinka
Matsuzaki, Yuichi
Iwaki, Ryuma
Ahmad, Hira
Daulton, Robbie
Musgrave, Drew
Wiet, Matthew G.
Heuer, Eric
Lawson, Emily
Schwarz, Erica
McDermott, Michael R.
Krishnamurthy, Rajesh
Krishnamurthy, Ramkumar
Hor, Kan
Armstrong, Aimee K.
Boe, Brian A.
Berman, Darren P.
Trask, Aaron J.
Humphrey, Jay D.
Marsden, Alison L.
Shinoka, Toshiharu
Breuer, Christopher K.
Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth
title Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth
title_full Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth
title_fullStr Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth
title_full_unstemmed Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth
title_short Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth
title_sort tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053249/
https://www.ncbi.nlm.nih.gov/pubmed/35603301
http://dx.doi.org/10.1038/s43856-021-00063-7
work_keys_str_mv AT blumkevinm tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT zbindenjacobc tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT ramachandraabhayb tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT lindseystephaniee tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT szafronjasonm tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT reinhardtjamesw tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT heitkempermegan tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT bestcamerona tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT mirhaidarigabrieljm tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT changyuchun tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT ulziibayaranudari tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT kellyjohn tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT shahkejalv tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT drewsjosephd tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT zakkojason tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT miyamotoshinka tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT matsuzakiyuichi tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT iwakiryuma tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT ahmadhira tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT daultonrobbie tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT musgravedrew tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT wietmatthewg tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT heuereric tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT lawsonemily tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT schwarzerica tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT mcdermottmichaelr tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT krishnamurthyrajesh tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT krishnamurthyramkumar tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT horkan tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT armstrongaimeek tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT boebriana tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT bermandarrenp tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT traskaaronj tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT humphreyjayd tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT marsdenalisonl tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT shinokatoshiharu tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth
AT breuerchristopherk tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth