Cargando…
Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth
BACKGROUND: Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. METHODS: Herein, we used an integrative computational-experimental app...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053249/ https://www.ncbi.nlm.nih.gov/pubmed/35603301 http://dx.doi.org/10.1038/s43856-021-00063-7 |
_version_ | 1784696957284909056 |
---|---|
author | Blum, Kevin M. Zbinden, Jacob C. Ramachandra, Abhay B. Lindsey, Stephanie E. Szafron, Jason M. Reinhardt, James W. Heitkemper, Megan Best, Cameron A. Mirhaidari, Gabriel J. M. Chang, Yu-Chun Ulziibayar, Anudari Kelly, John Shah, Kejal V. Drews, Joseph D. Zakko, Jason Miyamoto, Shinka Matsuzaki, Yuichi Iwaki, Ryuma Ahmad, Hira Daulton, Robbie Musgrave, Drew Wiet, Matthew G. Heuer, Eric Lawson, Emily Schwarz, Erica McDermott, Michael R. Krishnamurthy, Rajesh Krishnamurthy, Ramkumar Hor, Kan Armstrong, Aimee K. Boe, Brian A. Berman, Darren P. Trask, Aaron J. Humphrey, Jay D. Marsden, Alison L. Shinoka, Toshiharu Breuer, Christopher K. |
author_facet | Blum, Kevin M. Zbinden, Jacob C. Ramachandra, Abhay B. Lindsey, Stephanie E. Szafron, Jason M. Reinhardt, James W. Heitkemper, Megan Best, Cameron A. Mirhaidari, Gabriel J. M. Chang, Yu-Chun Ulziibayar, Anudari Kelly, John Shah, Kejal V. Drews, Joseph D. Zakko, Jason Miyamoto, Shinka Matsuzaki, Yuichi Iwaki, Ryuma Ahmad, Hira Daulton, Robbie Musgrave, Drew Wiet, Matthew G. Heuer, Eric Lawson, Emily Schwarz, Erica McDermott, Michael R. Krishnamurthy, Rajesh Krishnamurthy, Ramkumar Hor, Kan Armstrong, Aimee K. Boe, Brian A. Berman, Darren P. Trask, Aaron J. Humphrey, Jay D. Marsden, Alison L. Shinoka, Toshiharu Breuer, Christopher K. |
author_sort | Blum, Kevin M. |
collection | PubMed |
description | BACKGROUND: Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. METHODS: Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models. RESULTS: Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks. Our models predict that early neotissue accumulation is driven primarily by inflammatory processes in response to the implanted polymeric scaffold, but that turnover becomes progressively mechano-mediated as the scaffold degrades. Using a lamb model, we confirm that early neotissue formation results primarily from the foreign body reaction induced by the scaffold, resulting in an early period of dynamic remodeling characterized by transient TEVG narrowing. As the scaffold degrades, mechano-mediated neotissue remodeling becomes dominant around 26 weeks. After the scaffold degrades completely, the resulting neovessel undergoes growth and remodeling that mimicks native vessel behavior, including biological growth capacity, further supported by fluid–structure interaction simulations providing detailed hemodynamic and wall stress information. CONCLUSIONS: These findings provide insights into TEVG remodeling, and have important implications for clinical use and future development of TEVGs for children with congenital heart disease. |
format | Online Article Text |
id | pubmed-9053249 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-90532492022-05-20 Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth Blum, Kevin M. Zbinden, Jacob C. Ramachandra, Abhay B. Lindsey, Stephanie E. Szafron, Jason M. Reinhardt, James W. Heitkemper, Megan Best, Cameron A. Mirhaidari, Gabriel J. M. Chang, Yu-Chun Ulziibayar, Anudari Kelly, John Shah, Kejal V. Drews, Joseph D. Zakko, Jason Miyamoto, Shinka Matsuzaki, Yuichi Iwaki, Ryuma Ahmad, Hira Daulton, Robbie Musgrave, Drew Wiet, Matthew G. Heuer, Eric Lawson, Emily Schwarz, Erica McDermott, Michael R. Krishnamurthy, Rajesh Krishnamurthy, Ramkumar Hor, Kan Armstrong, Aimee K. Boe, Brian A. Berman, Darren P. Trask, Aaron J. Humphrey, Jay D. Marsden, Alison L. Shinoka, Toshiharu Breuer, Christopher K. Commun Med (Lond) Article BACKGROUND: Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. METHODS: Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models. RESULTS: Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks. Our models predict that early neotissue accumulation is driven primarily by inflammatory processes in response to the implanted polymeric scaffold, but that turnover becomes progressively mechano-mediated as the scaffold degrades. Using a lamb model, we confirm that early neotissue formation results primarily from the foreign body reaction induced by the scaffold, resulting in an early period of dynamic remodeling characterized by transient TEVG narrowing. As the scaffold degrades, mechano-mediated neotissue remodeling becomes dominant around 26 weeks. After the scaffold degrades completely, the resulting neovessel undergoes growth and remodeling that mimicks native vessel behavior, including biological growth capacity, further supported by fluid–structure interaction simulations providing detailed hemodynamic and wall stress information. CONCLUSIONS: These findings provide insights into TEVG remodeling, and have important implications for clinical use and future development of TEVGs for children with congenital heart disease. Nature Publishing Group UK 2022-01-10 /pmc/articles/PMC9053249/ /pubmed/35603301 http://dx.doi.org/10.1038/s43856-021-00063-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Blum, Kevin M. Zbinden, Jacob C. Ramachandra, Abhay B. Lindsey, Stephanie E. Szafron, Jason M. Reinhardt, James W. Heitkemper, Megan Best, Cameron A. Mirhaidari, Gabriel J. M. Chang, Yu-Chun Ulziibayar, Anudari Kelly, John Shah, Kejal V. Drews, Joseph D. Zakko, Jason Miyamoto, Shinka Matsuzaki, Yuichi Iwaki, Ryuma Ahmad, Hira Daulton, Robbie Musgrave, Drew Wiet, Matthew G. Heuer, Eric Lawson, Emily Schwarz, Erica McDermott, Michael R. Krishnamurthy, Rajesh Krishnamurthy, Ramkumar Hor, Kan Armstrong, Aimee K. Boe, Brian A. Berman, Darren P. Trask, Aaron J. Humphrey, Jay D. Marsden, Alison L. Shinoka, Toshiharu Breuer, Christopher K. Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth |
title | Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth |
title_full | Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth |
title_fullStr | Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth |
title_full_unstemmed | Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth |
title_short | Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth |
title_sort | tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053249/ https://www.ncbi.nlm.nih.gov/pubmed/35603301 http://dx.doi.org/10.1038/s43856-021-00063-7 |
work_keys_str_mv | AT blumkevinm tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT zbindenjacobc tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT ramachandraabhayb tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT lindseystephaniee tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT szafronjasonm tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT reinhardtjamesw tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT heitkempermegan tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT bestcamerona tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT mirhaidarigabrieljm tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT changyuchun tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT ulziibayaranudari tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT kellyjohn tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT shahkejalv tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT drewsjosephd tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT zakkojason tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT miyamotoshinka tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT matsuzakiyuichi tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT iwakiryuma tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT ahmadhira tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT daultonrobbie tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT musgravedrew tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT wietmatthewg tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT heuereric tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT lawsonemily tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT schwarzerica tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT mcdermottmichaelr tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT krishnamurthyrajesh tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT krishnamurthyramkumar tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT horkan tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT armstrongaimeek tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT boebriana tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT bermandarrenp tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT traskaaronj tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT humphreyjayd tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT marsdenalisonl tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT shinokatoshiharu tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth AT breuerchristopherk tissueengineeredvasculargraftstransformintoautologousneovesselscapableofnativefunctionandgrowth |