Cargando…
A BERT model generates diagnostically relevant semantic embeddings from pathology synopses with active learning
BACKGROUND: Pathology synopses consist of semi-structured or unstructured text summarizing visual information by observing human tissue. Experts write and interpret these synopses with high domain-specific knowledge to extract tissue semantics and formulate a diagnosis in the context of ancillary te...
Autores principales: | Mu, Youqing, Tizhoosh, Hamid R., Tayebi, Rohollah Moosavi, Ross, Catherine, Sur, Monalisa, Leber, Brian, Campbell, Clinton J. V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053264/ https://www.ncbi.nlm.nih.gov/pubmed/35602188 http://dx.doi.org/10.1038/s43856-021-00008-0 |
Ejemplares similares
-
Automated bone marrow cytology using deep learning to generate a histogram of cell types
por: Tayebi, Rohollah Moosavi, et al.
Publicado: (2022) -
Cell projection plots: A novel visualization of bone marrow aspirate cytology
por: Dehkharghanian, Taher, et al.
Publicado: (2023) -
Synopses
Publicado: (1998) -
Synopses of Editorial Board
Publicado: (1998) -
Synopses of Editorial Board
Publicado: (1998)