Cargando…
Development and multicenter validation of chest X-ray radiography interpretations based on natural language processing
BACKGROUND: Artificial intelligence can assist in interpreting chest X-ray radiography (CXR) data, but large datasets require efficient image annotation. The purpose of this study is to extract CXR labels from diagnostic reports based on natural language processing, train convolutional neural networ...
Autores principales: | Zhang, Yaping, Liu, Mingqian, Hu, Shundong, Shen, Yao, Lan, Jun, Jiang, Beibei, de Bock, Geertruida H., Vliegenthart, Rozemarijn, Chen, Xu, Xie, Xueqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053275/ https://www.ncbi.nlm.nih.gov/pubmed/35602222 http://dx.doi.org/10.1038/s43856-021-00043-x |
Ejemplares similares
-
Comparison of Chest Radiograph Captions Based on Natural Language Processing vs Completed by Radiologists
por: Zhang, Yaping, et al.
Publicado: (2023) -
Machine-Learning-Derived Nomogram Based on 3D Radiomic Features and Clinical Factors Predicts Progression-Free Survival in Lung Adenocarcinoma
por: Liu, Guixue, et al.
Publicado: (2021) -
INTERPRETING CHEST X-RAYS
por: Worthington, Mark
Publicado: (2011) -
Simultaneous Identification of EGFR,
KRAS,
ERBB2, and TP53 Mutations in Patients with Non-Small Cell Lung Cancer by Machine Learning-Derived Three-Dimensional Radiomics
por: Zhang, Tiening, et al.
Publicado: (2021) -
Optimization of tube voltage in X-ray dark-field chest radiography
por: Sauter, Andreas P., et al.
Publicado: (2019)