Cargando…
Improving personalized tumor growth predictions using a Bayesian combination of mechanistic modeling and machine learning
BACKGROUND: In clinical practice, a plethora of medical examinations are conducted to assess the state of a patient’s pathology producing a variety of clinical data. However, investigation of these data faces two major challenges. Firstly, we lack the knowledge of the mechanisms involved in regulati...
Autores principales: | Mascheroni, Pietro, Savvopoulos, Symeon, Alfonso, Juan Carlos López, Meyer-Hermann, Michael, Hatzikirou, Haralampos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053281/ https://www.ncbi.nlm.nih.gov/pubmed/35602187 http://dx.doi.org/10.1038/s43856-021-00020-4 |
Ejemplares similares
-
Investigating the Physical Effects in Bacterial Therapies for Avascular Tumors
por: Mascheroni, Pietro, et al.
Publicado: (2020) -
On the Impact of Chemo-Mechanically Induced Phenotypic Transitions in Gliomas
por: Mascheroni, Pietro, et al.
Publicado: (2019) -
On the Immunological Consequences of Conventionally Fractionated Radiotherapy
por: Alfonso, Juan Carlos L., et al.
Publicado: (2020) -
Cell Decision Making through the Lens of Bayesian Learning
por: Barua, Arnab, et al.
Publicado: (2023) -
In Silico Analysis of Cell Cycle Synchronisation Effects in Radiotherapy of Tumour Spheroids
por: Kempf, Harald, et al.
Publicado: (2013)