Cargando…
Effects of temperature and humidity on the performance of a PECH polymer coated SAW sensor
The influences of environment, such as temperature, humidity and interfering gases, on the performance of a surface acoustic wave (SAW) sensor in the detection of 2-chloroethyl ethyl sulfide (CEES) were invested. The 150 MHz SAW dual delay lines were used, coated with a poly(epichlorohydrin) (PECH)...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053706/ https://www.ncbi.nlm.nih.gov/pubmed/35517215 http://dx.doi.org/10.1039/d0ra02502j |
_version_ | 1784697029549621248 |
---|---|
author | Pan, Yong Zhang, Lin Cao, Bingqing Xue, Xufeng Liu, Weiwei Zhang, Caihong Wang, Wen |
author_facet | Pan, Yong Zhang, Lin Cao, Bingqing Xue, Xufeng Liu, Weiwei Zhang, Caihong Wang, Wen |
author_sort | Pan, Yong |
collection | PubMed |
description | The influences of environment, such as temperature, humidity and interfering gases, on the performance of a surface acoustic wave (SAW) sensor in the detection of 2-chloroethyl ethyl sulfide (CEES) were invested. The 150 MHz SAW dual delay lines were used, coated with a poly(epichlorohydrin) (PECH) thin layer, and CEES was detected under different concentrations. Linear correlation between the frequency-shift and the exposure time of the sensor to CEES could be observed, and the limit of CEES could be detected as low as 1.5 mg m(−3). Under different temperature (0–50 C°) and humidity (30–80% RH) conditions, CEES was detected by the fabricated SAW sensor coated with PECH, the frequency shifts were measured and the performance of the sensor was evaluated. The results proved that temperature and humidity were the most important factors to influence the performance of SAW sensors; with the decreasing of temperature and the increasing of humidity, there would be larger frequency shifts. In the interference experiments, it was found that most gases existing in the environment in high concentrations would not influence the detection of CEES. Then, the SAW sensor having been fabricated was kept under the conditions of 25 °C and 35% RH for 18 months to further verify the quality, and CEES was detected every so many months. It proved that the performance of the sensor would decrease about 16.39% after 18 months. Although it reflected the attenuation of the sensor to some extent, the sensor was still in good condition. Additionally, the related mechanisms were also discussed. |
format | Online Article Text |
id | pubmed-9053706 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90537062022-05-04 Effects of temperature and humidity on the performance of a PECH polymer coated SAW sensor Pan, Yong Zhang, Lin Cao, Bingqing Xue, Xufeng Liu, Weiwei Zhang, Caihong Wang, Wen RSC Adv Chemistry The influences of environment, such as temperature, humidity and interfering gases, on the performance of a surface acoustic wave (SAW) sensor in the detection of 2-chloroethyl ethyl sulfide (CEES) were invested. The 150 MHz SAW dual delay lines were used, coated with a poly(epichlorohydrin) (PECH) thin layer, and CEES was detected under different concentrations. Linear correlation between the frequency-shift and the exposure time of the sensor to CEES could be observed, and the limit of CEES could be detected as low as 1.5 mg m(−3). Under different temperature (0–50 C°) and humidity (30–80% RH) conditions, CEES was detected by the fabricated SAW sensor coated with PECH, the frequency shifts were measured and the performance of the sensor was evaluated. The results proved that temperature and humidity were the most important factors to influence the performance of SAW sensors; with the decreasing of temperature and the increasing of humidity, there would be larger frequency shifts. In the interference experiments, it was found that most gases existing in the environment in high concentrations would not influence the detection of CEES. Then, the SAW sensor having been fabricated was kept under the conditions of 25 °C and 35% RH for 18 months to further verify the quality, and CEES was detected every so many months. It proved that the performance of the sensor would decrease about 16.39% after 18 months. Although it reflected the attenuation of the sensor to some extent, the sensor was still in good condition. Additionally, the related mechanisms were also discussed. The Royal Society of Chemistry 2020-05-11 /pmc/articles/PMC9053706/ /pubmed/35517215 http://dx.doi.org/10.1039/d0ra02502j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Pan, Yong Zhang, Lin Cao, Bingqing Xue, Xufeng Liu, Weiwei Zhang, Caihong Wang, Wen Effects of temperature and humidity on the performance of a PECH polymer coated SAW sensor |
title | Effects of temperature and humidity on the performance of a PECH polymer coated SAW sensor |
title_full | Effects of temperature and humidity on the performance of a PECH polymer coated SAW sensor |
title_fullStr | Effects of temperature and humidity on the performance of a PECH polymer coated SAW sensor |
title_full_unstemmed | Effects of temperature and humidity on the performance of a PECH polymer coated SAW sensor |
title_short | Effects of temperature and humidity on the performance of a PECH polymer coated SAW sensor |
title_sort | effects of temperature and humidity on the performance of a pech polymer coated saw sensor |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053706/ https://www.ncbi.nlm.nih.gov/pubmed/35517215 http://dx.doi.org/10.1039/d0ra02502j |
work_keys_str_mv | AT panyong effectsoftemperatureandhumidityontheperformanceofapechpolymercoatedsawsensor AT zhanglin effectsoftemperatureandhumidityontheperformanceofapechpolymercoatedsawsensor AT caobingqing effectsoftemperatureandhumidityontheperformanceofapechpolymercoatedsawsensor AT xuexufeng effectsoftemperatureandhumidityontheperformanceofapechpolymercoatedsawsensor AT liuweiwei effectsoftemperatureandhumidityontheperformanceofapechpolymercoatedsawsensor AT zhangcaihong effectsoftemperatureandhumidityontheperformanceofapechpolymercoatedsawsensor AT wangwen effectsoftemperatureandhumidityontheperformanceofapechpolymercoatedsawsensor |