Cargando…
Validation pipeline for machine learning algorithm assessment for multiple vendors
A standardized objective evaluation method is needed to compare machine learning (ML) algorithms as these tools become available for clinical use. Therefore, we designed, built, and tested an evaluation pipeline with the goal of normalizing performance measurement of independently developed algorith...
Autores principales: | Bizzo, Bernardo C., Ebrahimian, Shadi, Walters, Mark E., Michalski, Mark H., Andriole, Katherine P., Dreyer, Keith J., Kalra, Mannudeep K., Alkasab, Tarik, Digumarthy, Subba R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053776/ https://www.ncbi.nlm.nih.gov/pubmed/35486572 http://dx.doi.org/10.1371/journal.pone.0267213 |
Ejemplares similares
-
Performance of a Chest Radiography AI Algorithm for Detection of Missed or Mislabeled Findings: A Multicenter Study
por: Kaviani, Parisa, et al.
Publicado: (2022) -
Auto-Detection of Motion Artifacts on CT Pulmonary Angiograms with a Physician-Trained AI Algorithm
por: Dasegowda, Giridhar, et al.
Publicado: (2023) -
CT Radiomics, Radiologists, and Clinical Information in Predicting Outcome of Patients with COVID-19 Pneumonia
por: Homayounieh, Fatemeh, et al.
Publicado: (2020) -
Radiologist-Trained and -Tested (R2.2.4) Deep Learning Models for Identifying Anatomical Landmarks in Chest CT
por: Kaviani, Parisa, et al.
Publicado: (2022) -
Use of radiomics to differentiate left atrial appendage thrombi and mixing artifacts on single-phase CT angiography
por: Ebrahimian, Shadi, et al.
Publicado: (2021)