Cargando…
Hyperspectral image compressed processing: Evolutionary multi-objective optimization sparse decomposition
In the compressed processing of hyperspectral images, orthogonal matching pursuit algorithm (OMP) can be used to obtain sparse decomposition results. Aimed at the time-complex and difficulty in applying real-time processing, an evolutionary multi-objective optimization sparse decomposition algorithm...
Autores principales: | WANG, Li, WANG, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053777/ https://www.ncbi.nlm.nih.gov/pubmed/35486628 http://dx.doi.org/10.1371/journal.pone.0267754 |
Ejemplares similares
-
Manifold regularization for sparse unmixing of hyperspectral images
por: Liu, Junmin, et al.
Publicado: (2016) -
An Inexact Penalty Decomposition Method for Sparse Optimization
por: Dong, Zhengshan, et al.
Publicado: (2021) -
Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach
por: Jurdana, Vedran, et al.
Publicado: (2023) -
An evolutionary decomposition-based multi-objective feature selection for multi-label classification
por: Asilian Bidgoli, Azam, et al.
Publicado: (2020) -
Unsupervised Hyperspectral Band Selection via Multimodal Evolutionary Algorithm and Subspace Decomposition
por: Wei, Yunpeng, et al.
Publicado: (2023)