Cargando…

Underwater acoustic target recognition method based on a joint neural network

To improve the recognition accuracy of underwater acoustic targets by artificial neural network, this study presents a new recognition method that integrates a one-dimensional convolutional neural network and a long short-term memory network. This new network framework is constructed and applied to...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Xing Cheng, Ren, Chenxi, Wang, Liming, Bai, Yunjiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053803/
https://www.ncbi.nlm.nih.gov/pubmed/35486577
http://dx.doi.org/10.1371/journal.pone.0266425
Descripción
Sumario:To improve the recognition accuracy of underwater acoustic targets by artificial neural network, this study presents a new recognition method that integrates a one-dimensional convolutional neural network and a long short-term memory network. This new network framework is constructed and applied to underwater acoustic target recognition for the first time. Ship acoustic data are used as input to evaluate the network performance. A visual analysis of the recognition results is performed. The results show that this method can realize the recognition and classification of underwater acoustic targets. Compared with a single neural network, the relevant indices, such as the recognition accuracy of the joint network are considerably higher. This provides a new direction for the application of deep learning in the field of underwater acoustic target recognition.