Cargando…
Machine learning reveals distinct gene signature profiles in lesional and nonlesional regions of inflammatory skin diseases
Analysis of gene expression from cutaneous lupus erythematosus, psoriasis, atopic dermatitis, and systemic sclerosis using gene set variation analysis (GSVA) revealed that lesional samples from each condition had unique features, but all four diseases displayed common enrichment in multiple inflamma...
Autores principales: | Martínez, Brittany A., Shrotri, Sneha, Kingsmore, Kathryn M., Bachali, Prathyusha, Grammer, Amrie C., Lipsky, Peter E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054015/ https://www.ncbi.nlm.nih.gov/pubmed/35486723 http://dx.doi.org/10.1126/sciadv.abn4776 |
Ejemplares similares
-
Classification of COVID-19 Patients into Clinically Relevant Subsets by a Novel Machine Learning Pipeline Using Transcriptomic Features
por: Daamen, Andrea R., et al.
Publicado: (2023) -
Comprehensive transcriptomic analysis of COVID-19 blood, lung, and airway
por: Daamen, Andrea R., et al.
Publicado: (2021) -
Analysis of transcriptomic features reveals molecular endotypes of SLE with clinical implications
por: Hubbard, Erika L., et al.
Publicado: (2023) -
Gene expression analysis delineates the potential roles of multiple interferons in systemic lupus erythematosus
por: Catalina, Michelle D., et al.
Publicado: (2019) -
Altered expression of genes controlling metabolism characterizes the tissue response to immune injury in lupus
por: Kingsmore, Kathryn M., et al.
Publicado: (2021)