Cargando…
Chi-MIC-share: a new feature selection algorithm for quantitative structure–activity relationship models
Quantitative structure–activity relationship models are used in toxicology to predict the effects of organic compounds on aquatic organisms. Common filter feature selection methods use correlation statistics to rank features, but this approach considers only the correlation between a single feature...
Autores principales: | Li, Yuting, Dai, Zhijun, Cao, Dan, Luo, Feng, Chen, Yuan, Yuan, Zheming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054197/ https://www.ncbi.nlm.nih.gov/pubmed/35520405 http://dx.doi.org/10.1039/d0ra00061b |
Ejemplares similares
-
Informative Gene Selection and Direct Classification of Tumor Based on Chi-Square Test of Pairwise Gene Interactions
por: Zhang, Hongyan, et al.
Publicado: (2014) -
Improving accuracy for cancer classification with a new algorithm for genes selection
por: Zhang, Hongyan, et al.
Publicado: (2012) -
Binary Matrix Shuffling Filter for Feature Selection in Neuronal Morphology Classification
por: Sun, Congwei, et al.
Publicado: (2015) -
TSG: a new algorithm for binary and multi-class cancer classification and informative genes selection
por: Wang, Haiyan, et al.
Publicado: (2013) -
iSuc-ChiDT: a computational method for identifying succinylation sites using statistical difference table encoding and the chi-square decision table classifier
por: Zeng, Ying, et al.
Publicado: (2022)