Cargando…
Drug–target affinity prediction using graph neural network and contact maps
Computer-aided drug design uses high-performance computers to simulate the tasks in drug design, which is a promising research area. Drug–target affinity (DTA) prediction is the most important step of computer-aided drug design, which could speed up drug development and reduce resource consumption....
Autores principales: | Jiang, Mingjian, Li, Zhen, Zhang, Shugang, Wang, Shuang, Wang, Xiaofeng, Yuan, Qing, Wei, Zhiqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054320/ https://www.ncbi.nlm.nih.gov/pubmed/35517730 http://dx.doi.org/10.1039/d0ra02297g |
Ejemplares similares
-
SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network
por: Zhang, Shugang, et al.
Publicado: (2021) -
Sequence-based drug-target affinity prediction using weighted graph neural networks
por: Jiang, Mingjian, et al.
Publicado: (2022) -
Toxicity Prediction Method Based on Multi-Channel Convolutional Neural Network
por: Yuan, Qing, et al.
Publicado: (2019) -
MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction
por: Yang, Ziduo, et al.
Publicado: (2022) -
MCN-CPI: Multiscale Convolutional Network for Compound–Protein Interaction Prediction
por: Wang, Shuang, et al.
Publicado: (2021)