Cargando…

Surface construction of fluorinated TiO(2) nanotube networks to develop uvioresistant superhydrophobic aramid fabric

Poor ultraviolet (UV) resistance and good hydrophilicity lead to light aging of aramid fabrics and cause heat damage to the human body. This scenario occurs when the absorbed water by the fabric evaporates and forms high-temperature water vapor in a high-temperature fire environment, which may scald...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Li, Shi, Min, Xu, Sijun, Sun, Qilong, Pan, Gangwei, Yao, Lirong, Zhu, Chunhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054610/
https://www.ncbi.nlm.nih.gov/pubmed/35514588
http://dx.doi.org/10.1039/d0ra03120h
Descripción
Sumario:Poor ultraviolet (UV) resistance and good hydrophilicity lead to light aging of aramid fabrics and cause heat damage to the human body. This scenario occurs when the absorbed water by the fabric evaporates and forms high-temperature water vapor in a high-temperature fire environment, which may scald the human body. Herein, a superhydrophobic hollow TNT network structure was built on surfaces of aramid fibers by surface coating fluorinated TiO(2) nanotubes (TNTs) to develop an air-permeable, UV-protective, and superhydrophobic coating. The as-prepared superhydrophobic aramid fabric exhibited highly superhydrophobic properties against various solutions of sauce, coffee, methylene blue, active red, Au nanoparticles, Ag nanoparticles, HCl, and NaOH with liquid contact angles up to 152–160°. In addition, the superhydrophobic fabric exhibited excellent UV aging resistance (UV protection factor was 100+; 74.58% of strength retention for 24 h of UV radiation compared with 55.15% of untreated fabric), a self-cleaning function against solid soil, and original wearing characteristics, including good breaking strength and air permeability. The developed superhydrophobic coating technology may promote practical application in high-temperature environments for aramid fabrics due to its good UV resistance, chemical resistance, poromericity, superhydrophobicity, anti-fouling, and self-cleaning properties.