Cargando…

Promotion of seed germination and early plant growth by KNO(3) and light spectra in Ocimum tenuiflorum using a plant factory

The plant factory with artificial light (PFAL) is a novel cultivation system of agriculture technology for crop production under controlled-environment conditions. However, there are a number of issues relating to low quality of seed germination and seedling vigor that lead to decreased crop yields....

Descripción completa

Detalles Bibliográficos
Autores principales: Thongtip, Akira, Mosaleeyanon, Kriengkrai, Korinsak, Siripar, Toojinda, Theerayut, Darwell, Clive Terence, Chutimanukul, Preuk, Chutimanukul, Panita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054764/
https://www.ncbi.nlm.nih.gov/pubmed/35488043
http://dx.doi.org/10.1038/s41598-022-11001-5
Descripción
Sumario:The plant factory with artificial light (PFAL) is a novel cultivation system of agriculture technology for crop production under controlled-environment conditions. However, there are a number of issues relating to low quality of seed germination and seedling vigor that lead to decreased crop yields. The present study investigates the optimal KNO(3) concentration for seed germination, and the influence of different light spectra on early plant growth in holy basil (Ocimum tenuiflorum) under a PFAL system. Experiment 1 investigated the effects of KNO(3) concentration (0, 0.2, 0.4 and 0.6%) on germination of seeds primed for 24 h under white Light emitting diodes (LED). Results show that sowing holy basil seeds in 0.4% KNO(3) enhanced seed germination percentage (GP) and germination index (GI), while decreasing mean germination time (MGT). Experiment 2 investigated the effect of four light spectra on seed germination and early plant growth by sowing with 0 and 0.4% KNO(3) and germinating for 15 days continuously under different monochromatic light settings: white, red, green and blue in PFAL. It was found that the green spectrum positively affected shoot and root length, and also decreased shortened MGT at 0 and 0.4% KNO(3) when compared with other light treatments. Additionally, pre-cultivated seedlings under the green spectrum showed significant improvement in the early plant growth for all holy basil varieties at 15 days after transplanting by promoting stem length, stem diameter, plant width, fresh weights of shoot and root, and dry weights of shoot and root. These findings could be useful in developing seed priming and light treatments to enhance seed germination and seedling quality of holy basil resulting in increased crop production under PFAL.