Cargando…
An integrated network representation of multiple cancer-specific data for graph-based machine learning
Genomic profiles of cancer cells provide valuable information on genetic alterations in cancer. Several recent studies employed these data to predict the response of cancer cell lines to drug treatment. Nonetheless, due to the multifactorial phenotypes and intricate mechanisms of cancer, the accurat...
Autores principales: | Pu, Limeng, Singha, Manali, Wu, Hsiao-Chun, Busch, Costas, Ramanujam, J., Brylinski, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054771/ https://www.ncbi.nlm.nih.gov/pubmed/35487924 http://dx.doi.org/10.1038/s41540-022-00226-9 |
Ejemplares similares
-
GraphSite: Ligand Binding Site Classification with Deep Graph Learning
por: Shi, Wentao, et al.
Publicado: (2022) -
GraphDTI: A robust deep learning predictor of drug-target interactions from multiple heterogeneous data
por: Liu, Guannan, et al.
Publicado: (2021) -
CancerOmicsNet: a multi-omics network-based approach to anti-cancer drug profiling
por: Pu, Limeng, et al.
Publicado: (2022) -
Pocket2Drug: An Encoder-Decoder Deep Neural Network for the Target-Based Drug Design
por: Shi, Wentao, et al.
Publicado: (2022) -
eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates
por: Pu, Limeng, et al.
Publicado: (2019)