Cargando…
Enzymatic synthesis of 2-hydroxy-4H-quinolizin-4-one scaffolds by integrating coenzyme a ligases and a type III PKS from Huperzia serrata
2-Hydroxy-4H-quinolizin-4-one scaffolds were enzymatically synthesized by integrating three enzymes including phenylacetate-CoA ligase (PcPCL) from an endophytic fungus Penicillium chrysogenum MT-12, malonyl-CoA synthase (AtMatB) from Arabidopsis thaliana, and a type III polyketide synthase (HsPKS3)...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054772/ https://www.ncbi.nlm.nih.gov/pubmed/35517366 http://dx.doi.org/10.1039/d0ra04133e |
Sumario: | 2-Hydroxy-4H-quinolizin-4-one scaffolds were enzymatically synthesized by integrating three enzymes including phenylacetate-CoA ligase (PcPCL) from an endophytic fungus Penicillium chrysogenum MT-12, malonyl-CoA synthase (AtMatB) from Arabidopsis thaliana, and a type III polyketide synthase (HsPKS3) from Chinese club moss Huperzia serrata. The findings paved the way to produce these kinds of structurally interesting alkaloids by engineered microorganisms. |
---|