Cargando…

Behavior and interactions of the plant growth-promoting bacteria Azospirillum oryzae NBT506 and Bacillus velezensis UTB96 in a co-culture system

The objective of the present study was to evaluate possible interactions between two potential plant growth-promoting bacteria (PGPB): Azospirillum oryzae strain NBT506 and Bacillus velezensis strain UTB96. To do this, the growth kinetic, biofilm formation, motility, surfactin production, indole-3-a...

Descripción completa

Detalles Bibliográficos
Autores principales: Bagheri, Negar, Ahmadzadeh, Masoud, Mariotte, Pierre, Jouzani, Gholamreza Salehi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054896/
https://www.ncbi.nlm.nih.gov/pubmed/35486223
http://dx.doi.org/10.1007/s11274-022-03283-8
Descripción
Sumario:The objective of the present study was to evaluate possible interactions between two potential plant growth-promoting bacteria (PGPB): Azospirillum oryzae strain NBT506 and Bacillus velezensis strain UTB96. To do this, the growth kinetic, biofilm formation, motility, surfactin production, indole-3-acetic acid (IAA) production, phosphate solubilization and enzyme activities of the strains were measured in monoculture and co-culture. The maximum biomass production for the strains in monoculture and co-culture was about 10(11) CFU/ml, confirming that these two strains have the potential to grow in co-culture without reduction of biomass efficiency. The co-culture system showed more stable biofilm formation until the end of day 3. Azospirillum showed the maximum IAA production (41.5 mg/l) in a monoculture compared to other treatments. Surfactin promoted both swimming and swarming motility in all treatments. The Bacillus strain in the monoculture and co-culture showed high phosphate solubilizing capability, which increased continuously in the co-culture system after 6 days. The strains showed protease, amylase and cellulase activities in both monoculture and co-culture forms. Chitinase and lipase activities were observed in both the monoculture of the Bacillus strain and the co-culture. Overall, our findings highlight the promotion of biological and beneficial effects of these bacteria when growing together in co-culture. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11274-022-03283-8.