Cargando…

Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms

Cardiac action potential (AP) shape and propagation are regulated by several key dynamic factors such as ion channel recovery and intracellular Ca(2+) cycling. Experimental methods for manipulating AP electrical dynamics commonly use ion channel inhibitors that lack spatial and temporal specificity....

Descripción completa

Detalles Bibliográficos
Autores principales: Biasci, V., Santini, L., Marchal, G. A., Hussaini, S., Ferrantini, C., Coppini, R., Loew, L. M., Luther, S., Campione, M., Poggesi, C., Pavone, F. S., Cerbai, E., Bub, G., Sacconi, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054908/
https://www.ncbi.nlm.nih.gov/pubmed/35488105
http://dx.doi.org/10.1007/s00395-022-00933-8
_version_ 1784697297646387200
author Biasci, V.
Santini, L.
Marchal, G. A.
Hussaini, S.
Ferrantini, C.
Coppini, R.
Loew, L. M.
Luther, S.
Campione, M.
Poggesi, C.
Pavone, F. S.
Cerbai, E.
Bub, G.
Sacconi, L.
author_facet Biasci, V.
Santini, L.
Marchal, G. A.
Hussaini, S.
Ferrantini, C.
Coppini, R.
Loew, L. M.
Luther, S.
Campione, M.
Poggesi, C.
Pavone, F. S.
Cerbai, E.
Bub, G.
Sacconi, L.
author_sort Biasci, V.
collection PubMed
description Cardiac action potential (AP) shape and propagation are regulated by several key dynamic factors such as ion channel recovery and intracellular Ca(2+) cycling. Experimental methods for manipulating AP electrical dynamics commonly use ion channel inhibitors that lack spatial and temporal specificity. In this work, we propose an approach based on optogenetics to manipulate cardiac electrical activity employing a light-modulated depolarizing current with intensities that are too low to elicit APs (sub-threshold illumination), but are sufficient to fine-tune AP electrical dynamics. We investigated the effects of sub-threshold illumination in isolated cardiomyocytes and whole hearts by using transgenic mice constitutively expressing a light-gated ion channel (channelrhodopsin-2, ChR2). We find that ChR2-mediated depolarizing current prolongs APs and reduces conduction velocity (CV) in a space-selective and reversible manner. Sub-threshold manipulation also affects the dynamics of cardiac electrical activity, increasing the magnitude of cardiac alternans. We used an optical system that uses real-time feedback control to generate re-entrant circuits with user-defined cycle lengths to explore the role of cardiac alternans in spontaneous termination of ventricular tachycardias (VTs). We demonstrate that VT stability significantly decreases during sub-threshold illumination primarily due to an increase in the amplitude of electrical oscillations, which implies that cardiac alternans may be beneficial in the context of self-termination of VT. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00395-022-00933-8
format Online
Article
Text
id pubmed-9054908
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-90549082022-05-07 Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms Biasci, V. Santini, L. Marchal, G. A. Hussaini, S. Ferrantini, C. Coppini, R. Loew, L. M. Luther, S. Campione, M. Poggesi, C. Pavone, F. S. Cerbai, E. Bub, G. Sacconi, L. Basic Res Cardiol Original Contribution Cardiac action potential (AP) shape and propagation are regulated by several key dynamic factors such as ion channel recovery and intracellular Ca(2+) cycling. Experimental methods for manipulating AP electrical dynamics commonly use ion channel inhibitors that lack spatial and temporal specificity. In this work, we propose an approach based on optogenetics to manipulate cardiac electrical activity employing a light-modulated depolarizing current with intensities that are too low to elicit APs (sub-threshold illumination), but are sufficient to fine-tune AP electrical dynamics. We investigated the effects of sub-threshold illumination in isolated cardiomyocytes and whole hearts by using transgenic mice constitutively expressing a light-gated ion channel (channelrhodopsin-2, ChR2). We find that ChR2-mediated depolarizing current prolongs APs and reduces conduction velocity (CV) in a space-selective and reversible manner. Sub-threshold manipulation also affects the dynamics of cardiac electrical activity, increasing the magnitude of cardiac alternans. We used an optical system that uses real-time feedback control to generate re-entrant circuits with user-defined cycle lengths to explore the role of cardiac alternans in spontaneous termination of ventricular tachycardias (VTs). We demonstrate that VT stability significantly decreases during sub-threshold illumination primarily due to an increase in the amplitude of electrical oscillations, which implies that cardiac alternans may be beneficial in the context of self-termination of VT. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00395-022-00933-8 Springer Berlin Heidelberg 2022-04-29 2022 /pmc/articles/PMC9054908/ /pubmed/35488105 http://dx.doi.org/10.1007/s00395-022-00933-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visithttp://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Contribution
Biasci, V.
Santini, L.
Marchal, G. A.
Hussaini, S.
Ferrantini, C.
Coppini, R.
Loew, L. M.
Luther, S.
Campione, M.
Poggesi, C.
Pavone, F. S.
Cerbai, E.
Bub, G.
Sacconi, L.
Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms
title Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms
title_full Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms
title_fullStr Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms
title_full_unstemmed Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms
title_short Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms
title_sort optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms
topic Original Contribution
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054908/
https://www.ncbi.nlm.nih.gov/pubmed/35488105
http://dx.doi.org/10.1007/s00395-022-00933-8
work_keys_str_mv AT biasciv optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT santinil optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT marchalga optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT hussainis optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT ferrantinic optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT coppinir optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT loewlm optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT luthers optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT campionem optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT poggesic optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT pavonefs optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT cerbaie optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT bubg optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms
AT sacconil optogeneticmanipulationofcardiacelectricaldynamicsusingsubthresholdilluminationdissectingtheroleofcardiacalternansinterminatingrapidrhythms