Cargando…

Semi-supervised multi-label classification using an extended graph-based manifold regularization

Graph-based algorithms are known to be effective approaches to semi-supervised learning. However, there has been relatively little work on extending these algorithms to the multi-label classification case. We derive an extension of the Manifold Regularization algorithm to multi-label classification,...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ding, Dick, Scott
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054917/
https://www.ncbi.nlm.nih.gov/pubmed/35535331
http://dx.doi.org/10.1007/s40747-021-00611-7
Descripción
Sumario:Graph-based algorithms are known to be effective approaches to semi-supervised learning. However, there has been relatively little work on extending these algorithms to the multi-label classification case. We derive an extension of the Manifold Regularization algorithm to multi-label classification, which is significantly simpler than the general Vector Manifold Regularization approach. We then augment our algorithm with a weighting strategy to allow differential influence on a model between instances having ground-truth vs. induced labels. Experiments on four benchmark multi-label data sets show that the resulting algorithm performs better overall compared to the existing semi-supervised multi-label classification algorithms at various levels of label sparsity. Comparisons with state-of-the-art supervised multi-label approaches (which of course are fully labeled) also show that our algorithm outperforms all of them even with a substantial number of unlabeled examples.