Cargando…
Semi-supervised multi-label classification using an extended graph-based manifold regularization
Graph-based algorithms are known to be effective approaches to semi-supervised learning. However, there has been relatively little work on extending these algorithms to the multi-label classification case. We derive an extension of the Manifold Regularization algorithm to multi-label classification,...
Autores principales: | Li, Ding, Dick, Scott |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054917/ https://www.ncbi.nlm.nih.gov/pubmed/35535331 http://dx.doi.org/10.1007/s40747-021-00611-7 |
Ejemplares similares
-
Prototype Regularized Manifold Regularization Technique for Semi-Supervised Online Extreme Learning Machine
por: Muhammad Zaly Shah, Muhammad Zafran, et al.
Publicado: (2022) -
Sub-Graph Regularization on Kernel Regression for Robust Semi-Supervised Dimensionality Reduction
por: Liu, Jiao, et al.
Publicado: (2019) -
Semi-supervised multi-label collective classification ensemble for functional genomics
por: Wu, Qingyao, et al.
Publicado: (2014) -
Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks
por: Pan, Xiaoyong, et al.
Publicado: (2019) -
Alzheimer’s Disease Early Diagnosis Using Manifold-Based Semi-Supervised Learning
por: Khajehnejad, Moein, et al.
Publicado: (2017)