Cargando…
Explainability of the COVID-19 epidemiological model with nonnegative tensor factorization
The world is witnessing the devastating effects of the COVID-19 pandemic. Each country responded to contain the spread of the virus in the early stages through diverse response measures. Interpreting these responses and their patterns globally is essential to inform future responses to COVID-19 vari...
Autores principales: | Balasubramaniam, Thirunavukarasu, Warne, David J., Nayak, Richi, Mengersen, Kerrie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055008/ https://www.ncbi.nlm.nih.gov/pubmed/35528806 http://dx.doi.org/10.1007/s41060-022-00324-1 |
Ejemplares similares
-
Identifying Covid-19 misinformation tweets and learning their spatio-temporal topic dynamics using Nonnegative Coupled Matrix Tensor Factorization
por: Balasubramaniam, Thirunavukarasu, et al.
Publicado: (2021) -
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Deep learning based topic and sentiment analysis: COVID19 information seeking on social media
por: Bashar, Md Abul, et al.
Publicado: (2022) -
Scenario Discovery Using Nonnegative Tensor Factorization
por: Bader, Brett W., et al.
Publicado: (2008) -
Progressive domain adaptation for detecting hate speech on social media with small training set and its application to COVID-19 concerned posts
por: Bashar, Md Abul, et al.
Publicado: (2021)