Cargando…

Metal nanoparticles functionalized with nutraceutical Kaempferitrin from edible Crotalaria juncea, exert potent antimicrobial and antibiofilm effects against Methicillin-resistant Staphylococcus aureus

Kaempferitrin (KF), a flavonol glycoside, was isolated from the edible plant Crotalaria juncea. Optimization for the synthesis of silver (AgNPs) and copper (CuNPs) nanoparticles using C. juncea extract and kaempferitrin were attempted for the first time. A detailed study on size and stability analys...

Descripción completa

Detalles Bibliográficos
Autores principales: Shamprasad, Bhanuvalli R., Lotha, Robert, Nagarajan, Saisubramanian, Sivasubramanian, Arvind
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055053/
https://www.ncbi.nlm.nih.gov/pubmed/35487931
http://dx.doi.org/10.1038/s41598-022-11004-2
Descripción
Sumario:Kaempferitrin (KF), a flavonol glycoside, was isolated from the edible plant Crotalaria juncea. Optimization for the synthesis of silver (AgNPs) and copper (CuNPs) nanoparticles using C. juncea extract and kaempferitrin were attempted for the first time. A detailed study on size and stability analysis have been reported. Efficacy of KF@AgNPs and KF@CuNPs against biofilm formation and planktonic mode of growth on methicillin-resistant Staphylococcus aureus (MRSA) along with possible mechanisms has been explored. Release of Cu(II) upon prolonged treatment with KF@CuNPs in the presence of MRSA was quantified through Alizarin red test, indicating the antibacterial effect is initiated by the CuNPs itself. Time kill curve depicted both the NPs have similar kill kinetics to curtail the pathogen and imaging with Crystal violet assay, Fluorescent live dead imaging and SEM analysis revealed a 60% reduction in biofilm formation at the Sub-MIC concentration of KF@AgNPs and KF@CuNPs. Furthermore, the membrane permeability and cell surface hydrophobicity were altered in the presence of both the NPs. The colony count from the in vivo infection zebrafish model in the treatment group showed a decline of > 1.8 fold for KF@AgNPs and > two fold for KF@CuNPs. Toxicity studies did not reveal any abnormality in liver and brain enzyme levels. Liver morphology images show no severe cytological alterations when treated with KF@AgNPs and were almost similar to the normal liver. Thus, KF@AgNPs was nontoxic and caused significant reduction in biofilm formation in MRSA, also reduced bacterial bioburden in the infected zebrafish, which has the potential to be explored in higher animal models.