Cargando…
Cycle-consistent adversarial networks improves generalizability of radiomics model in grading meningiomas on external validation
The heterogeneity of MRI is one of the major reasons for decreased performance of a radiomics model on external validation, limiting the model’s generalizability and clinical application. We aimed to establish a generalizable radiomics model to predict meningioma grade on external validation through...
Autores principales: | Park, Yae Won, Shin, Seo Jeong, Eom, Jihwan, Lee, Heirim, You, Seng Chan, Ahn, Sung Soo, Lim, Soo Mee, Park, Rae Woong, Lee, Seung-Koo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055063/ https://www.ncbi.nlm.nih.gov/pubmed/35488007 http://dx.doi.org/10.1038/s41598-022-10956-9 |
Ejemplares similares
-
An interpretable radiomics model to select patients for radiotherapy after surgery for WHO grade 2 meningiomas
por: Park, Chae Jung, et al.
Publicado: (2022) -
An interpretable multiparametric radiomics model for the diagnosis of schizophrenia using magnetic resonance imaging of the corpus callosum
por: Bang, Minji, et al.
Publicado: (2021) -
An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease
por: Park, Chae Jung, et al.
Publicado: (2023) -
Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation
por: Park, Yae Won, et al.
Publicado: (2021) -
Comparison of Diagnostic Performance of Two-Dimensional and Three-Dimensional Fractal Dimension and Lacunarity Analyses for Predicting the Meningioma Grade
por: Kim, Soopil, et al.
Publicado: (2020)