Cargando…
Knowledge integration and decision support for accelerated discovery of antibiotic resistance genes
We present a machine learning framework to automate knowledge discovery through knowledge graph construction, inconsistency resolution, and iterative link prediction. By incorporating knowledge from 10 publicly available sources, we construct an Escherichia coli antibiotic resistance knowledge graph...
Autores principales: | Youn, Jason, Rai, Navneet, Tagkopoulos, Ilias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055065/ https://www.ncbi.nlm.nih.gov/pubmed/35487919 http://dx.doi.org/10.1038/s41467-022-29993-z |
Ejemplares similares
-
Accelerated knowledge discovery from omics data by optimal experimental design
por: Wang, Xiaokang, et al.
Publicado: (2020) -
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
por: Kim, Minseung, et al.
Publicado: (2016) -
Understanding the Formation and Mechanism of Anticipatory Responses in Escherichia coli
por: Rai, Navneet, et al.
Publicado: (2022) -
An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of
Escherichia coli
por: Carrera, Javier, et al.
Publicado: (2014) -
From Data to Optimal Decision Making: A Data-Driven, Probabilistic Machine Learning Approach to Decision Support for Patients With Sepsis
por: Tsoukalas, Athanasios, et al.
Publicado: (2015)