Cargando…

Anion order in perovskite oxynitrides AMO(2)N (A = Ba, Sr, Ca; M = Ta, Nb): a first-principles based investigation

Perovskite-type oxynitrides have attracted a lot of research interest as emerging functional materials with promising wide applications. The ordering of O/N anions in perovskite oxynitrides plays an important role in determining their physical properties, while it is still challenging to characteriz...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xi, Jiang, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055086/
https://www.ncbi.nlm.nih.gov/pubmed/35516175
http://dx.doi.org/10.1039/d0ra03681a
_version_ 1784697325993590784
author Xu, Xi
Jiang, Hong
author_facet Xu, Xi
Jiang, Hong
author_sort Xu, Xi
collection PubMed
description Perovskite-type oxynitrides have attracted a lot of research interest as emerging functional materials with promising wide applications. The ordering of O/N anions in perovskite oxynitrides plays an important role in determining their physical properties, while it is still challenging to characterize the actual anion order in a particular material and understand the underlying physics. In this work, we have investigated anion order in a series of perovskite oxynitrides AMO(2)N (A = Ba, Sr, Ca; M = Ta, Nb) through first-principles calculations and the cluster-expansion-model-based Monte Carlo simulations. In terms of cluster correlation functions, it can be explicitly demonstrated that short-range anion order is present in all these perovskite oxynitrides. In addition, the anion order varies with the temperature of thermal equilibrium and depends on the cation type. Special quasi-ordered structures are then constructed as representative structures by taking the calculated anion order at finite temperature into consideration and their band gaps and dielectric tensors are predicted by first-principles calculations and compared to experimental values.
format Online
Article
Text
id pubmed-9055086
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90550862022-05-04 Anion order in perovskite oxynitrides AMO(2)N (A = Ba, Sr, Ca; M = Ta, Nb): a first-principles based investigation Xu, Xi Jiang, Hong RSC Adv Chemistry Perovskite-type oxynitrides have attracted a lot of research interest as emerging functional materials with promising wide applications. The ordering of O/N anions in perovskite oxynitrides plays an important role in determining their physical properties, while it is still challenging to characterize the actual anion order in a particular material and understand the underlying physics. In this work, we have investigated anion order in a series of perovskite oxynitrides AMO(2)N (A = Ba, Sr, Ca; M = Ta, Nb) through first-principles calculations and the cluster-expansion-model-based Monte Carlo simulations. In terms of cluster correlation functions, it can be explicitly demonstrated that short-range anion order is present in all these perovskite oxynitrides. In addition, the anion order varies with the temperature of thermal equilibrium and depends on the cation type. Special quasi-ordered structures are then constructed as representative structures by taking the calculated anion order at finite temperature into consideration and their band gaps and dielectric tensors are predicted by first-principles calculations and compared to experimental values. The Royal Society of Chemistry 2020-06-25 /pmc/articles/PMC9055086/ /pubmed/35516175 http://dx.doi.org/10.1039/d0ra03681a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Xu, Xi
Jiang, Hong
Anion order in perovskite oxynitrides AMO(2)N (A = Ba, Sr, Ca; M = Ta, Nb): a first-principles based investigation
title Anion order in perovskite oxynitrides AMO(2)N (A = Ba, Sr, Ca; M = Ta, Nb): a first-principles based investigation
title_full Anion order in perovskite oxynitrides AMO(2)N (A = Ba, Sr, Ca; M = Ta, Nb): a first-principles based investigation
title_fullStr Anion order in perovskite oxynitrides AMO(2)N (A = Ba, Sr, Ca; M = Ta, Nb): a first-principles based investigation
title_full_unstemmed Anion order in perovskite oxynitrides AMO(2)N (A = Ba, Sr, Ca; M = Ta, Nb): a first-principles based investigation
title_short Anion order in perovskite oxynitrides AMO(2)N (A = Ba, Sr, Ca; M = Ta, Nb): a first-principles based investigation
title_sort anion order in perovskite oxynitrides amo(2)n (a = ba, sr, ca; m = ta, nb): a first-principles based investigation
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055086/
https://www.ncbi.nlm.nih.gov/pubmed/35516175
http://dx.doi.org/10.1039/d0ra03681a
work_keys_str_mv AT xuxi anionorderinperovskiteoxynitridesamo2nabasrcamtanbafirstprinciplesbasedinvestigation
AT jianghong anionorderinperovskiteoxynitridesamo2nabasrcamtanbafirstprinciplesbasedinvestigation