Cargando…

Efficient blue electroluminescence with an external quantum efficiency of 9.20% and CIE(y) < 0.08 without excimer emission

Aromatically substituted phenanthroimidazoles at the C6 and C9 positions enhanced the thermal, photochemical and electroluminescence properties due to extension of conjugation. These new materials exhibit good photophysical properties with high thermal stability, good film-forming property and high...

Descripción completa

Detalles Bibliográficos
Autores principales: Jayabharathi, Jayaraman, Sivaraj, Sekar, Thanikachalam, Venugopal, Seransenguttuvan, Balu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055148/
https://www.ncbi.nlm.nih.gov/pubmed/35517441
http://dx.doi.org/10.1039/d0ra03463k
Descripción
Sumario:Aromatically substituted phenanthroimidazoles at the C6 and C9 positions enhanced the thermal, photochemical and electroluminescence properties due to extension of conjugation. These new materials exhibit good photophysical properties with high thermal stability, good film-forming property and high luminous efficiency. The electroluminescence performances of C6 and C9 modified phenanthroimidazoles as host emitters were evaluated as well as the dopant in the fabricated devices. Among the non-doped devices, pyrene substituted PPI-Py or PPICN-Py based devices show maximum efficiency: PPI-Py/PPICN-Py: η(c) (cd A(−1)) – 9.20/9.98; η(p) (lm W(−1)) – 8.50/9.16; η(ex) (%) – 5.56/5.80. The doped OLEDs, m-MTDATA/TAPC:PPI-Cz (4.81/4.85%), m-MTDATA/TAPC:PPICN-Cz (5.23/5.26%), m-MTDATA/TAPC:PPI-An (5.01/5.04%), m-MTDATA/TAPC:PPICN-An (5.25/5.28%), m-MTDATA/TAPC:PPI-Py (5.61/5.65%) and m-MTDATA/TAPC:PPICN-Py (5.76/5.78%) show improved device efficiencies compared to non-doped devices. Designing C6/C9 modified phenanthrimidazole fluorophores is an efficient strategy for constructing highly efficient OLEDs.