Cargando…

Bioinformatics network analyses of growth differentiation factor 11

Growth differentiation factor 11 (GDF11) has been implicated in rejuvenating functions in age-related diseases. The molecular mechanisms connecting GDF11 with these anti-aging phenomena, including reverse age-related cardiac hypertrophy and vascular and neurogenic rejuvenation, remain unclear. In th...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Feng, Yang, Xia, Bao, Zhijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055169/
https://www.ncbi.nlm.nih.gov/pubmed/35582621
http://dx.doi.org/10.1515/biol-2022-0044
Descripción
Sumario:Growth differentiation factor 11 (GDF11) has been implicated in rejuvenating functions in age-related diseases. The molecular mechanisms connecting GDF11 with these anti-aging phenomena, including reverse age-related cardiac hypertrophy and vascular and neurogenic rejuvenation, remain unclear. In this study, we sought to uncover the molecular functions of GDF11 using bioinformatics and network-driven analyses at the human gene and transcription levels using the gene co-expression network analysis, the protein–protein interaction network analysis, and the transcription factor network analysis. Our findings suggested that GDF11 is involved in a variety of functions, such as apoptosis, DNA repair, telomere maintenance, and interaction with key transcription factors, such as MYC proto-oncogene, specificity protein 1, and ETS proto-oncogene 2. The human skin fibroblast premature senescence model was established by UVB. The treatment with 10 ng/mL GDF11 in this cell model could reduce cell damage, reduce the apoptosis rate and the expression of caspase-3, and increase the length of telomeres. Therefore, our findings shed light on the functions of GDF11 and provide insights into the roles of GDF11 in aging.