Cargando…

Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas–solid reactions

The single-phase multi-principal-component CoFeMnTiVZr alloy was obtained by rapid solidification and examined by a combination of electrochemical methods and gas–solid reactions. X-ray diffraction and high-resolution transmission electron microscopy analyses reveal a hexagonal Laves-phase structure...

Descripción completa

Detalles Bibliográficos
Autores principales: Sarac, Baran, Zadorozhnyy, Vladislav, Berdonosova, Elena, Ivanov, Yurii P., Klyamkin, Semen, Gumrukcu, Selin, Sarac, A. Sezai, Korol, Artem, Semenov, Dmitri, Zadorozhnyy, Mikhail, Sharma, Adit, Greer, Alan L., Eckert, Jürgen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055208/
https://www.ncbi.nlm.nih.gov/pubmed/35516196
http://dx.doi.org/10.1039/d0ra04089d
_version_ 1784697355406147584
author Sarac, Baran
Zadorozhnyy, Vladislav
Berdonosova, Elena
Ivanov, Yurii P.
Klyamkin, Semen
Gumrukcu, Selin
Sarac, A. Sezai
Korol, Artem
Semenov, Dmitri
Zadorozhnyy, Mikhail
Sharma, Adit
Greer, Alan L.
Eckert, Jürgen
author_facet Sarac, Baran
Zadorozhnyy, Vladislav
Berdonosova, Elena
Ivanov, Yurii P.
Klyamkin, Semen
Gumrukcu, Selin
Sarac, A. Sezai
Korol, Artem
Semenov, Dmitri
Zadorozhnyy, Mikhail
Sharma, Adit
Greer, Alan L.
Eckert, Jürgen
author_sort Sarac, Baran
collection PubMed
description The single-phase multi-principal-component CoFeMnTiVZr alloy was obtained by rapid solidification and examined by a combination of electrochemical methods and gas–solid reactions. X-ray diffraction and high-resolution transmission electron microscopy analyses reveal a hexagonal Laves-phase structure (type C14). Cyclic voltammetry and electrochemical impedance spectroscopy investigations in the hydrogen absorption/desorption region give insight into the absorption/desorption kinetics and the change in the desorption charge in terms of the applied potential. The thickness of the hydrogen absorption layer obtained by the electrochemical reaction is estimated by high-resolution transmission electron microscopy. The electrochemical hydrogen storage capacity for a given applied voltage is calculated from a series of chronoamperometry and cyclic voltammetry measurements. The selected alloy exhibits good stability for reversible hydrogen absorption and demonstrates a maximum hydrogen capacity of ∼1.9 wt% at room temperature. The amount of hydrogen absorbed in the gas–solid reaction reaches 1.7 wt% at 298 K and 5 MPa, evidencing a good correlation with the electrochemical results.
format Online
Article
Text
id pubmed-9055208
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90552082022-05-04 Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas–solid reactions Sarac, Baran Zadorozhnyy, Vladislav Berdonosova, Elena Ivanov, Yurii P. Klyamkin, Semen Gumrukcu, Selin Sarac, A. Sezai Korol, Artem Semenov, Dmitri Zadorozhnyy, Mikhail Sharma, Adit Greer, Alan L. Eckert, Jürgen RSC Adv Chemistry The single-phase multi-principal-component CoFeMnTiVZr alloy was obtained by rapid solidification and examined by a combination of electrochemical methods and gas–solid reactions. X-ray diffraction and high-resolution transmission electron microscopy analyses reveal a hexagonal Laves-phase structure (type C14). Cyclic voltammetry and electrochemical impedance spectroscopy investigations in the hydrogen absorption/desorption region give insight into the absorption/desorption kinetics and the change in the desorption charge in terms of the applied potential. The thickness of the hydrogen absorption layer obtained by the electrochemical reaction is estimated by high-resolution transmission electron microscopy. The electrochemical hydrogen storage capacity for a given applied voltage is calculated from a series of chronoamperometry and cyclic voltammetry measurements. The selected alloy exhibits good stability for reversible hydrogen absorption and demonstrates a maximum hydrogen capacity of ∼1.9 wt% at room temperature. The amount of hydrogen absorbed in the gas–solid reaction reaches 1.7 wt% at 298 K and 5 MPa, evidencing a good correlation with the electrochemical results. The Royal Society of Chemistry 2020-06-29 /pmc/articles/PMC9055208/ /pubmed/35516196 http://dx.doi.org/10.1039/d0ra04089d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Sarac, Baran
Zadorozhnyy, Vladislav
Berdonosova, Elena
Ivanov, Yurii P.
Klyamkin, Semen
Gumrukcu, Selin
Sarac, A. Sezai
Korol, Artem
Semenov, Dmitri
Zadorozhnyy, Mikhail
Sharma, Adit
Greer, Alan L.
Eckert, Jürgen
Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas–solid reactions
title Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas–solid reactions
title_full Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas–solid reactions
title_fullStr Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas–solid reactions
title_full_unstemmed Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas–solid reactions
title_short Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas–solid reactions
title_sort hydrogen storage performance of the multi-principal-component cofemntivzr alloy in electrochemical and gas–solid reactions
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055208/
https://www.ncbi.nlm.nih.gov/pubmed/35516196
http://dx.doi.org/10.1039/d0ra04089d
work_keys_str_mv AT saracbaran hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions
AT zadorozhnyyvladislav hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions
AT berdonosovaelena hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions
AT ivanovyuriip hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions
AT klyamkinsemen hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions
AT gumrukcuselin hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions
AT saracasezai hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions
AT korolartem hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions
AT semenovdmitri hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions
AT zadorozhnyymikhail hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions
AT sharmaadit hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions
AT greeralanl hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions
AT eckertjurgen hydrogenstorageperformanceofthemultiprincipalcomponentcofemntivzralloyinelectrochemicalandgassolidreactions