Cargando…
Strain forces tuned the electronic and optical properties in GaTe/MoS(2) van der Waals heterostructures
Two-dimensional (2D) van der Waals heterostructures (vdWHs) have attracted widespread attention in fundamental materials science and device physics. In this work, we report a novel GaTe/MoS(2) vdWH and theoretically investigate the electronic and optical properties based on first-principles calculat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055235/ https://www.ncbi.nlm.nih.gov/pubmed/35517469 http://dx.doi.org/10.1039/d0ra04643d |
_version_ | 1784697361953456128 |
---|---|
author | Li, Yuan Liu, Jijian Zhao, Xiuwen Yuan, Xingzhao Hu, Guichao Yuan, Xiaobo Ren, Junfeng |
author_facet | Li, Yuan Liu, Jijian Zhao, Xiuwen Yuan, Xingzhao Hu, Guichao Yuan, Xiaobo Ren, Junfeng |
author_sort | Li, Yuan |
collection | PubMed |
description | Two-dimensional (2D) van der Waals heterostructures (vdWHs) have attracted widespread attention in fundamental materials science and device physics. In this work, we report a novel GaTe/MoS(2) vdWH and theoretically investigate the electronic and optical properties based on first-principles calculations. GaTe/MoS(2) vdWH possesses an indirect band gap with type-II band alignment. Meanwhile, the interfacial charge transfer from MoS(2) to GaTe can effectively separate electrons and holes. Also, this vdWH shows improved visible-ultraviolet optical absorption properties compared with those of the isolated GaTe or MoS(2) monolayers. More remarkably, the biaxial strain can not only modulate the band gap but also enhance the optical performance in GaTe/MoS(2) vdWH. In particular, the tensile strain is more effective for improving the optical absorption in the visible light region. These findings indicate that GaTe/MoS(2) vdWH is a promising candidate for nanoelectronics and optoelectronic devices. |
format | Online Article Text |
id | pubmed-9055235 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90552352022-05-04 Strain forces tuned the electronic and optical properties in GaTe/MoS(2) van der Waals heterostructures Li, Yuan Liu, Jijian Zhao, Xiuwen Yuan, Xingzhao Hu, Guichao Yuan, Xiaobo Ren, Junfeng RSC Adv Chemistry Two-dimensional (2D) van der Waals heterostructures (vdWHs) have attracted widespread attention in fundamental materials science and device physics. In this work, we report a novel GaTe/MoS(2) vdWH and theoretically investigate the electronic and optical properties based on first-principles calculations. GaTe/MoS(2) vdWH possesses an indirect band gap with type-II band alignment. Meanwhile, the interfacial charge transfer from MoS(2) to GaTe can effectively separate electrons and holes. Also, this vdWH shows improved visible-ultraviolet optical absorption properties compared with those of the isolated GaTe or MoS(2) monolayers. More remarkably, the biaxial strain can not only modulate the band gap but also enhance the optical performance in GaTe/MoS(2) vdWH. In particular, the tensile strain is more effective for improving the optical absorption in the visible light region. These findings indicate that GaTe/MoS(2) vdWH is a promising candidate for nanoelectronics and optoelectronic devices. The Royal Society of Chemistry 2020-07-02 /pmc/articles/PMC9055235/ /pubmed/35517469 http://dx.doi.org/10.1039/d0ra04643d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Li, Yuan Liu, Jijian Zhao, Xiuwen Yuan, Xingzhao Hu, Guichao Yuan, Xiaobo Ren, Junfeng Strain forces tuned the electronic and optical properties in GaTe/MoS(2) van der Waals heterostructures |
title | Strain forces tuned the electronic and optical properties in GaTe/MoS(2) van der Waals heterostructures |
title_full | Strain forces tuned the electronic and optical properties in GaTe/MoS(2) van der Waals heterostructures |
title_fullStr | Strain forces tuned the electronic and optical properties in GaTe/MoS(2) van der Waals heterostructures |
title_full_unstemmed | Strain forces tuned the electronic and optical properties in GaTe/MoS(2) van der Waals heterostructures |
title_short | Strain forces tuned the electronic and optical properties in GaTe/MoS(2) van der Waals heterostructures |
title_sort | strain forces tuned the electronic and optical properties in gate/mos(2) van der waals heterostructures |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055235/ https://www.ncbi.nlm.nih.gov/pubmed/35517469 http://dx.doi.org/10.1039/d0ra04643d |
work_keys_str_mv | AT liyuan strainforcestunedtheelectronicandopticalpropertiesingatemos2vanderwaalsheterostructures AT liujijian strainforcestunedtheelectronicandopticalpropertiesingatemos2vanderwaalsheterostructures AT zhaoxiuwen strainforcestunedtheelectronicandopticalpropertiesingatemos2vanderwaalsheterostructures AT yuanxingzhao strainforcestunedtheelectronicandopticalpropertiesingatemos2vanderwaalsheterostructures AT huguichao strainforcestunedtheelectronicandopticalpropertiesingatemos2vanderwaalsheterostructures AT yuanxiaobo strainforcestunedtheelectronicandopticalpropertiesingatemos2vanderwaalsheterostructures AT renjunfeng strainforcestunedtheelectronicandopticalpropertiesingatemos2vanderwaalsheterostructures |