Cargando…

Life history strategies of stream fishes linked to predictors of hydrologic stability

Life history theory provides a framework to understand environmental change based on species strategies for survival and reproduction under stable, cyclical, or stochastic environmental conditions. We evaluated environmental predictors of fish life history strategies in 20 streams intersecting a nat...

Descripción completa

Detalles Bibliográficos
Autores principales: Hitt, Nathaniel P., Landsman, Andrew P., Raesly, Richard L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055292/
https://www.ncbi.nlm.nih.gov/pubmed/35509608
http://dx.doi.org/10.1002/ece3.8861
_version_ 1784697376090357760
author Hitt, Nathaniel P.
Landsman, Andrew P.
Raesly, Richard L.
author_facet Hitt, Nathaniel P.
Landsman, Andrew P.
Raesly, Richard L.
author_sort Hitt, Nathaniel P.
collection PubMed
description Life history theory provides a framework to understand environmental change based on species strategies for survival and reproduction under stable, cyclical, or stochastic environmental conditions. We evaluated environmental predictors of fish life history strategies in 20 streams intersecting a national park within the Potomac River basin in eastern North America. We sampled stream sites during 2018–2019 and collected 3801 individuals representing 51 species within 10 taxonomic families. We quantified life history strategies for species from their coordinates in an ordination space defined by trade‐offs in spawning season duration, fecundity, and parental care characteristic of opportunistic, periodic, and equilibrium strategies. Our analysis revealed important environmental predictors: Abundance of opportunistic strategists increased with low‐permeability soils that produce flashy runoff dynamics and decreased with karst terrain (carbonate bedrock) where groundwater inputs stabilize stream flow and temperature. Conversely, abundance of equilibrium strategists increased in karst terrain indicating a response to more stable environmental conditions. Our study indicated that fish community responses to groundwater and runoff processes may be explained by species traits for survival and reproduction. Our findings also suggest the utility of life history theory for understanding ecological responses to destabilized environmental conditions under global climate change.
format Online
Article
Text
id pubmed-9055292
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-90552922022-05-03 Life history strategies of stream fishes linked to predictors of hydrologic stability Hitt, Nathaniel P. Landsman, Andrew P. Raesly, Richard L. Ecol Evol Research Articles Life history theory provides a framework to understand environmental change based on species strategies for survival and reproduction under stable, cyclical, or stochastic environmental conditions. We evaluated environmental predictors of fish life history strategies in 20 streams intersecting a national park within the Potomac River basin in eastern North America. We sampled stream sites during 2018–2019 and collected 3801 individuals representing 51 species within 10 taxonomic families. We quantified life history strategies for species from their coordinates in an ordination space defined by trade‐offs in spawning season duration, fecundity, and parental care characteristic of opportunistic, periodic, and equilibrium strategies. Our analysis revealed important environmental predictors: Abundance of opportunistic strategists increased with low‐permeability soils that produce flashy runoff dynamics and decreased with karst terrain (carbonate bedrock) where groundwater inputs stabilize stream flow and temperature. Conversely, abundance of equilibrium strategists increased in karst terrain indicating a response to more stable environmental conditions. Our study indicated that fish community responses to groundwater and runoff processes may be explained by species traits for survival and reproduction. Our findings also suggest the utility of life history theory for understanding ecological responses to destabilized environmental conditions under global climate change. John Wiley and Sons Inc. 2022-04-29 /pmc/articles/PMC9055292/ /pubmed/35509608 http://dx.doi.org/10.1002/ece3.8861 Text en © 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Hitt, Nathaniel P.
Landsman, Andrew P.
Raesly, Richard L.
Life history strategies of stream fishes linked to predictors of hydrologic stability
title Life history strategies of stream fishes linked to predictors of hydrologic stability
title_full Life history strategies of stream fishes linked to predictors of hydrologic stability
title_fullStr Life history strategies of stream fishes linked to predictors of hydrologic stability
title_full_unstemmed Life history strategies of stream fishes linked to predictors of hydrologic stability
title_short Life history strategies of stream fishes linked to predictors of hydrologic stability
title_sort life history strategies of stream fishes linked to predictors of hydrologic stability
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055292/
https://www.ncbi.nlm.nih.gov/pubmed/35509608
http://dx.doi.org/10.1002/ece3.8861
work_keys_str_mv AT hittnathanielp lifehistorystrategiesofstreamfisheslinkedtopredictorsofhydrologicstability
AT landsmanandrewp lifehistorystrategiesofstreamfisheslinkedtopredictorsofhydrologicstability
AT raeslyrichardl lifehistorystrategiesofstreamfisheslinkedtopredictorsofhydrologicstability