Cargando…
ECG-iCOVIDNet: Interpretable AI model to identify changes in the ECG signals of post-COVID subjects
OBJECTIVE: Studies showed that many COVID-19 survivors develop sub-clinical to clinical heart damage, even if subjects did not have underlying heart disease before COVID. Since Electrocardiogram (ECG) is a reliable technique for cardiovascular disease diagnosis, this study analyzes the 12-lead ECG r...
Autores principales: | Agrawal, Amulya, Chauhan, Aniket, Shetty, Manu Kumar, P, Girish M., Gupta, Mohit D., Gupta, Anubha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055384/ https://www.ncbi.nlm.nih.gov/pubmed/35533456 http://dx.doi.org/10.1016/j.compbiomed.2022.105540 |
Ejemplares similares
-
Utility of the CORD ECG Database in Evaluating ECG Interpretation by Emergency Medicine Residents
por: Wong, Hubert E., et al.
Publicado: (2002) -
Cardiac arrhythmias: practical ECG interpretation /
por: Mangiola, Stelio
Publicado: (1973) -
An artificial intelligence–enabled ECG algorithm for comprehensive ECG interpretation: Can it pass the ‘Turing test’?
por: Kashou, Anthony H., et al.
Publicado: (2021) -
Competency in ECG Interpretation Among Medical Students
por: Kopeć, Grzegorz, et al.
Publicado: (2015) -
Clinically contextualised ECG interpretation: the impact of prior clinical exposure and case vignettes on ECG diagnostic accuracy
por: Viljoen, Charle André, et al.
Publicado: (2021)