Cargando…
Room-temperature synthesis of water-dispersible sulfur-doped reduced graphene oxide without stabilizers
Sulfur-Doped graphene has attracted significant attention because of its potential uses in sensors, catalysts, and energy storage applications. In conventional approaches, the sulfur-doped graphene is fabricated with graphene oxide and sulfur-containing compounds through thermal annealing or hydroth...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055422/ https://www.ncbi.nlm.nih.gov/pubmed/35519750 http://dx.doi.org/10.1039/d0ra04838k |
_version_ | 1784697407766790144 |
---|---|
author | Guo, Jianqiang Wang, Weimiao Li, Yue Liang, Jiafeng Zhu, Qiaosi Li, Jiongli Wang, Xudong |
author_facet | Guo, Jianqiang Wang, Weimiao Li, Yue Liang, Jiafeng Zhu, Qiaosi Li, Jiongli Wang, Xudong |
author_sort | Guo, Jianqiang |
collection | PubMed |
description | Sulfur-Doped graphene has attracted significant attention because of its potential uses in sensors, catalysts, and energy storage applications. In conventional approaches, the sulfur-doped graphene is fabricated with graphene oxide and sulfur-containing compounds through thermal annealing or hydrothermal process, which generally involves special equipment and heat treatment, and requires additional stabilizers to make it solution-processable. In this work, we report a facile one-step approach to synthesize water-dispersible sulfur-doped reduced graphene oxide (S-rGO). Graphene oxide (GO) could be readily reduced and converted to S-rGO simultaneously by directly mixing GO dispersion with hydrosulfide hydrate (NaSH·xH(2)O) at room temperature. The sulfur doping is confirmed by high resolution S 2p XPS spectrum and element mapping. The colloidal dispersion state of S-rGO is confirmed by the investigation of Tyndall effect, the zeta potential and particle size distribution measurement. Compared with previously reported strategies, NaSH can initiate the reduction and sulfur doping at room temperature, demand no heat treatment, require no equipment and form stable aqueous S-rGO dispersion without using any stabilizer. These advantages will facilitate large-scale production of water-dispersible (sulfur doped) graphene and further boost their applications in sensors, catalysts and energy storage devices. |
format | Online Article Text |
id | pubmed-9055422 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90554222022-05-04 Room-temperature synthesis of water-dispersible sulfur-doped reduced graphene oxide without stabilizers Guo, Jianqiang Wang, Weimiao Li, Yue Liang, Jiafeng Zhu, Qiaosi Li, Jiongli Wang, Xudong RSC Adv Chemistry Sulfur-Doped graphene has attracted significant attention because of its potential uses in sensors, catalysts, and energy storage applications. In conventional approaches, the sulfur-doped graphene is fabricated with graphene oxide and sulfur-containing compounds through thermal annealing or hydrothermal process, which generally involves special equipment and heat treatment, and requires additional stabilizers to make it solution-processable. In this work, we report a facile one-step approach to synthesize water-dispersible sulfur-doped reduced graphene oxide (S-rGO). Graphene oxide (GO) could be readily reduced and converted to S-rGO simultaneously by directly mixing GO dispersion with hydrosulfide hydrate (NaSH·xH(2)O) at room temperature. The sulfur doping is confirmed by high resolution S 2p XPS spectrum and element mapping. The colloidal dispersion state of S-rGO is confirmed by the investigation of Tyndall effect, the zeta potential and particle size distribution measurement. Compared with previously reported strategies, NaSH can initiate the reduction and sulfur doping at room temperature, demand no heat treatment, require no equipment and form stable aqueous S-rGO dispersion without using any stabilizer. These advantages will facilitate large-scale production of water-dispersible (sulfur doped) graphene and further boost their applications in sensors, catalysts and energy storage devices. The Royal Society of Chemistry 2020-07-14 /pmc/articles/PMC9055422/ /pubmed/35519750 http://dx.doi.org/10.1039/d0ra04838k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Guo, Jianqiang Wang, Weimiao Li, Yue Liang, Jiafeng Zhu, Qiaosi Li, Jiongli Wang, Xudong Room-temperature synthesis of water-dispersible sulfur-doped reduced graphene oxide without stabilizers |
title | Room-temperature synthesis of water-dispersible sulfur-doped reduced graphene oxide without stabilizers |
title_full | Room-temperature synthesis of water-dispersible sulfur-doped reduced graphene oxide without stabilizers |
title_fullStr | Room-temperature synthesis of water-dispersible sulfur-doped reduced graphene oxide without stabilizers |
title_full_unstemmed | Room-temperature synthesis of water-dispersible sulfur-doped reduced graphene oxide without stabilizers |
title_short | Room-temperature synthesis of water-dispersible sulfur-doped reduced graphene oxide without stabilizers |
title_sort | room-temperature synthesis of water-dispersible sulfur-doped reduced graphene oxide without stabilizers |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055422/ https://www.ncbi.nlm.nih.gov/pubmed/35519750 http://dx.doi.org/10.1039/d0ra04838k |
work_keys_str_mv | AT guojianqiang roomtemperaturesynthesisofwaterdispersiblesulfurdopedreducedgrapheneoxidewithoutstabilizers AT wangweimiao roomtemperaturesynthesisofwaterdispersiblesulfurdopedreducedgrapheneoxidewithoutstabilizers AT liyue roomtemperaturesynthesisofwaterdispersiblesulfurdopedreducedgrapheneoxidewithoutstabilizers AT liangjiafeng roomtemperaturesynthesisofwaterdispersiblesulfurdopedreducedgrapheneoxidewithoutstabilizers AT zhuqiaosi roomtemperaturesynthesisofwaterdispersiblesulfurdopedreducedgrapheneoxidewithoutstabilizers AT lijiongli roomtemperaturesynthesisofwaterdispersiblesulfurdopedreducedgrapheneoxidewithoutstabilizers AT wangxudong roomtemperaturesynthesisofwaterdispersiblesulfurdopedreducedgrapheneoxidewithoutstabilizers |