Cargando…
Stereo slant discrimination of planar 3D surfaces: Frontoparallel versus planar matching
Binocular stereo cues are important for discriminating 3D surface orientation, especially at near distances. We devised a single-interval task where observers discriminated the slant of a densely textured planar test surface relative to a textured planar surround reference surface. Although surfaces...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055558/ https://www.ncbi.nlm.nih.gov/pubmed/35467704 http://dx.doi.org/10.1167/jov.22.5.6 |
Sumario: | Binocular stereo cues are important for discriminating 3D surface orientation, especially at near distances. We devised a single-interval task where observers discriminated the slant of a densely textured planar test surface relative to a textured planar surround reference surface. Although surfaces were rendered with correct perspective, the stimuli were designed so that the binocular cues dominated performance. Slant discrimination performance was measured as a function of the reference slant and the level of uncorrelated white noise added to the test-plane images in the left and right eyes. We compared human performance with an approximate ideal observer (planar matching [PM]) and two subideal observers. The PM observer uses the image in one eye and back projection to predict a test image in the other eye for all possible slants, tilts, and distances. The estimated slant, tilt, and distance are determined by the prediction that most closely matches the measured image in the other eye. The first subideal observer (local planar matching [LPM]) applies PM over local neighborhoods and then pools estimates across the test plane. The second suboptimal observer (local frontoparallel matching [LFM]) uses only location disparity. We find that the ideal observer (PM) and the first subideal observer (LPM) outperforms the second subideal observer (LFM), demonstrating the additional benefit of pattern disparities. We also find that all three model observers can account for human performance, if two free parameters are included: a fixed small level of internal estimation noise, and a fixed overall efficiency scalar on slant discriminability. |
---|