Cargando…
A new approach for determining SARS-CoV-2 epitopes using machine learning-based in silico methods
The emergence of machine learning-based in silico tools has enabled rapid and high-quality predictions in the biomedical field. In the COVID-19 pandemic, machine learning methods have been used in many topics such as predicting the death of patients, modeling the spread of infection, determining fut...
Autores principales: | Cihan, Pınar, Ozger, Zeynep Banu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055767/ https://www.ncbi.nlm.nih.gov/pubmed/35561658 http://dx.doi.org/10.1016/j.compbiolchem.2022.107688 |
Ejemplares similares
-
A novel ensemble fuzzy classification model in SARS-CoV-2 B-cell epitope identification for development of protein-based vaccine
por: Ozger, Zeynep Banu, et al.
Publicado: (2022) -
A robust protein language model for SARS-CoV-2 protein–protein interaction network prediction
por: Ozger, Zeynep Banu
Publicado: (2023) -
An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study
por: Yang, Zikun, et al.
Publicado: (2021) -
In silico T cell epitope identification for SARS-CoV-2: Progress and perspectives
por: Sohail, Muhammad Saqib, et al.
Publicado: (2021) -
In Silico and In Vivo Evaluation of SARS-CoV-2 Predicted Epitopes-Based Candidate Vaccine
por: Shehata, Mahmoud M., et al.
Publicado: (2021)