Cargando…

Assessment of the mental workload of trainee pilots of remotely operated aircraft using functional near-infrared spectroscopy

BACKGROUND: Operating an aircraft is associated with a large mental workload; however, knowledge of the mental workload of ROV operators is limited. The purpose of this study was to establish a digital system for assessing the mental workload of remotely operated vehicle (ROV) operators using hemody...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Liya, Si, Juanning, Sun, Lei, Mao, Gengsheng, Yu, Shengyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055770/
https://www.ncbi.nlm.nih.gov/pubmed/35490209
http://dx.doi.org/10.1186/s12883-022-02683-5
Descripción
Sumario:BACKGROUND: Operating an aircraft is associated with a large mental workload; however, knowledge of the mental workload of ROV operators is limited. The purpose of this study was to establish a digital system for assessing the mental workload of remotely operated vehicle (ROV) operators using hemodynamic parameters, and compare results of different groups with different experience levels. METHOD: Forty-one trainee pilots performed flight tasks once daily for 5 consecutive days in a flight simulation. Forty-five pilots experienced pilots and 68 experienced drivers were also included. Hemodynamic responses were measured by functional near-infrared spectroscopy (fNIRS). RESULTS: The median duration of peak oxyhemoglobin was 147.13 s (interquartile range [IQR] 21.97, 401.70 s) in the left brain and 180.74 s (IQR 34.37, 432.01 s) in the right brain in the experienced pilot group, and 184.42 s (IQR 3.41, 451.81 s) on day 5 in the left brain and 160.30 s (IQR 2.62, 528.20 s) in the right brain in the trainee group. CONCLUSION: Navigation training reduces peak oxyhemoglobin duration, and may potentially be used as a surrogate marker for mental workload of ROV operators. Peak oxyhemoglobin concentration during s task may allow development of a simplified scheme for optimizing flight performance based on the mental workload of a pilot. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12883-022-02683-5.