Cargando…

Endemic state equivalence between non-Markovian SEIS and Markovian SIS model in complex networks

In the light of several major epidemic events that emerged in the past two decades, and emphasized by the COVID-19 pandemics, the non-Markovian spreading models occurring on complex networks gained significant attention from the scientific community. Following this interest, in this article, we expl...

Descripción completa

Detalles Bibliográficos
Autores principales: Tomovski, Igor, Basnarkov, Lasko, Abazi, Alajdin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055791/
https://www.ncbi.nlm.nih.gov/pubmed/35529899
http://dx.doi.org/10.1016/j.physa.2022.127480
Descripción
Sumario:In the light of several major epidemic events that emerged in the past two decades, and emphasized by the COVID-19 pandemics, the non-Markovian spreading models occurring on complex networks gained significant attention from the scientific community. Following this interest, in this article, we explore the relations that exist between the mean-field approximated non-Markovian SEIS (Susceptible–Exposed–Infectious–Susceptible) and the classical Markovian SIS, as basic reoccurring virus spreading models in complex networks. We investigate the similarities and seek for equivalences both for the discrete-time and the continuous-time forms. First, we formally introduce the continuous-time non-Markovian SEIS model, and derive the epidemic threshold in a strict mathematical procedure. Then we present the main result of the paper that, providing certain relations between process parameters hold, the stationary-state solutions of the status probabilities in the non-Markovian SEIS may be found from the stationary state probabilities of the Markovian SIS model. This result has a two-fold significance. First, it simplifies the computational complexity of the non-Markovian model in practical applications, where only the stationary distributions of the state probabilities are required. Next, it defines the epidemic threshold of the non-Markovian SEIS model, without the necessity of a thrall mathematical analysis. We present this result both in analytical form, and confirm the result through numerical simulations. Furthermore, as of secondary importance, in an analytical procedure we show that each Markovian SIS may be represented as non-Markovian SEIS model.