Cargando…

Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz

Fused silica crucibles are commonly used in the fabrication process of solar grade silicon ingots. These crucibles are manufactured from high purity natural quartz sand and as a consequence, their properties are influenced by the presence of water and hydroxyls in the raw quartz. In this work, diffu...

Descripción completa

Detalles Bibliográficos
Autores principales: Gaweł, Bartłomiej A., Ulvensøen, Anna, Łukaszuk, Katarzyna, Arstad, Bjørnar, Muggerud, Astrid Marie F., Erbe, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055915/
https://www.ncbi.nlm.nih.gov/pubmed/35520046
http://dx.doi.org/10.1039/d0ra05798c
_version_ 1784697520148971520
author Gaweł, Bartłomiej A.
Ulvensøen, Anna
Łukaszuk, Katarzyna
Arstad, Bjørnar
Muggerud, Astrid Marie F.
Erbe, Andreas
author_facet Gaweł, Bartłomiej A.
Ulvensøen, Anna
Łukaszuk, Katarzyna
Arstad, Bjørnar
Muggerud, Astrid Marie F.
Erbe, Andreas
author_sort Gaweł, Bartłomiej A.
collection PubMed
description Fused silica crucibles are commonly used in the fabrication process of solar grade silicon ingots. These crucibles are manufactured from high purity natural quartz sand and as a consequence, their properties are influenced by the presence of water and hydroxyls in the raw quartz. In this work, diffuse reflectance IR, (1)H magic angle spinning NMR, and Raman spectroscopy were used to investigate the influence of thermal treatment on water and hydroxyl groups in high purity natural quartz sand. Most of the water in dry sand is present in the form of closed inclusions within the quartz grains which were detected in Raman imaging studies, even after thermally treating the samples at 600 °C. Only after heating to 900 °C did this water completely vanish, most likely as a result of rupturing of the inclusions. However, newly formed OH groups, identified as isolated and hydrogen bound OH were observed as products of the reaction between water and quartz. Similarly, liquid water was observed in NMR spectra even after treatment at 600 °C while at temperatures >900 °C, only non-interacting silanol groups were present. The comparison of the temperature dependence of the IR and NMR spectra also yields insight into the assignment of the OH stretching mode region of the IR spectrum in this system. The intensity of water related bands decreases while the intensity of OH bands first increases and then decreases with increasing temperature. The band intensity of Al-rich defects as well as the characteristic feature at 3200 cm(−1) does not follow the temperature dependence of typical water peaks. It is also shown that leaching the quartz sand in HF solution helps to remove water from inclusions, likely by forming pathways for fluid flow inside the quartz grains. Milling of the samples caused formation of an additional type of hydroxyl group, possibly due to partial amorphisation of the surfaces of the quartz grains surface during the process. The results improve the basis for a knowledge-based processes development for the processing of high purity natural quartz.
format Online
Article
Text
id pubmed-9055915
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90559152022-05-04 Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz Gaweł, Bartłomiej A. Ulvensøen, Anna Łukaszuk, Katarzyna Arstad, Bjørnar Muggerud, Astrid Marie F. Erbe, Andreas RSC Adv Chemistry Fused silica crucibles are commonly used in the fabrication process of solar grade silicon ingots. These crucibles are manufactured from high purity natural quartz sand and as a consequence, their properties are influenced by the presence of water and hydroxyls in the raw quartz. In this work, diffuse reflectance IR, (1)H magic angle spinning NMR, and Raman spectroscopy were used to investigate the influence of thermal treatment on water and hydroxyl groups in high purity natural quartz sand. Most of the water in dry sand is present in the form of closed inclusions within the quartz grains which were detected in Raman imaging studies, even after thermally treating the samples at 600 °C. Only after heating to 900 °C did this water completely vanish, most likely as a result of rupturing of the inclusions. However, newly formed OH groups, identified as isolated and hydrogen bound OH were observed as products of the reaction between water and quartz. Similarly, liquid water was observed in NMR spectra even after treatment at 600 °C while at temperatures >900 °C, only non-interacting silanol groups were present. The comparison of the temperature dependence of the IR and NMR spectra also yields insight into the assignment of the OH stretching mode region of the IR spectrum in this system. The intensity of water related bands decreases while the intensity of OH bands first increases and then decreases with increasing temperature. The band intensity of Al-rich defects as well as the characteristic feature at 3200 cm(−1) does not follow the temperature dependence of typical water peaks. It is also shown that leaching the quartz sand in HF solution helps to remove water from inclusions, likely by forming pathways for fluid flow inside the quartz grains. Milling of the samples caused formation of an additional type of hydroxyl group, possibly due to partial amorphisation of the surfaces of the quartz grains surface during the process. The results improve the basis for a knowledge-based processes development for the processing of high purity natural quartz. The Royal Society of Chemistry 2020-08-05 /pmc/articles/PMC9055915/ /pubmed/35520046 http://dx.doi.org/10.1039/d0ra05798c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Gaweł, Bartłomiej A.
Ulvensøen, Anna
Łukaszuk, Katarzyna
Arstad, Bjørnar
Muggerud, Astrid Marie F.
Erbe, Andreas
Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz
title Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz
title_full Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz
title_fullStr Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz
title_full_unstemmed Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz
title_short Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz
title_sort structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055915/
https://www.ncbi.nlm.nih.gov/pubmed/35520046
http://dx.doi.org/10.1039/d0ra05798c
work_keys_str_mv AT gawełbartłomieja structuralevolutionofwaterandhydroxylgroupsduringthermalmechanicalandchemicaltreatmentofhighpuritynaturalquartz
AT ulvensøenanna structuralevolutionofwaterandhydroxylgroupsduringthermalmechanicalandchemicaltreatmentofhighpuritynaturalquartz
AT łukaszukkatarzyna structuralevolutionofwaterandhydroxylgroupsduringthermalmechanicalandchemicaltreatmentofhighpuritynaturalquartz
AT arstadbjørnar structuralevolutionofwaterandhydroxylgroupsduringthermalmechanicalandchemicaltreatmentofhighpuritynaturalquartz
AT muggerudastridmarief structuralevolutionofwaterandhydroxylgroupsduringthermalmechanicalandchemicaltreatmentofhighpuritynaturalquartz
AT erbeandreas structuralevolutionofwaterandhydroxylgroupsduringthermalmechanicalandchemicaltreatmentofhighpuritynaturalquartz