Cargando…

Extraction and purification of ε-poly-l-lysine from fermentation broth using an ethanol/ammonium sulfate aqueous two-phase system combined with ultrafiltration

ε-Poly-l-lysine (ε-PL) serves as a natural food preservative and is manufactured mainly by extraction from microbial fermentation broth using ion-exchange chromatography. In order to develop an alternative purification strategy, an environmentally friendly alcohol/salt aqueous two-phase system (ATPS...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xusheng, Diao, Wenjiao, Ma, Yu, Mao, Zhonggui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055990/
https://www.ncbi.nlm.nih.gov/pubmed/35521107
http://dx.doi.org/10.1039/d0ra04245e
Descripción
Sumario:ε-Poly-l-lysine (ε-PL) serves as a natural food preservative and is manufactured mainly by extraction from microbial fermentation broth using ion-exchange chromatography. In order to develop an alternative purification strategy, an environmentally friendly alcohol/salt aqueous two-phase system (ATPS) was explored in this study for ε-PL extraction. A study of the separation of ε-PL in different alcohol/salt systems showed that ethanol/ammonium sulfate ATPS exhibited the highest ε-PL partition coefficient and recovery ratio. Based on the phase diagram, the effect of phase composition on partition, and the removal of pigment and protein, an ATPS that was composed of 20% (w/w) ethanol and 20% (w/w) ammonium sulfate, with a feedstock at pH 9.5, was developed to extract ε-PL from the fermentation broth. This achieved an ε-PL recovery ratio of 96.15% with an ε-PL purity of 40.23% after triplicate extractions. Subsequently, desalting by ultrafiltration led to a final ε-PL product of 92.39% purity and 87.72% recovery. The ethanol/ammonium sulfate ATPS provides a new possibility for ε-PL purification.