Cargando…
Research on Impulse Power Load Forecasting Based on Improved Recurrent Neural Networks
Deep learning is good at extracting the required feature quantity from the massive input information through multiple hidden layers and completing the learning through training to achieve the task of load forecasting. The impulse power load data contain a lot of noise, burrs, and strong randomness....
Autores principales: | Feng, Chenyang, Xu, Kang, Ma, Haoyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056239/ https://www.ncbi.nlm.nih.gov/pubmed/35502351 http://dx.doi.org/10.1155/2022/2784563 |
Ejemplares similares
-
Comparison of Recurrent Neural Networks for Wind Power Forecasting
por: López, Erick, et al.
Publicado: (2020) -
Recurrent neural networks for short-term load forecasting: an overview and comparative analysis
por: Bianchi, Filippo Maria, et al.
Publicado: (2017) -
Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market
por: Bozkurt, Ömer Özgür, et al.
Publicado: (2017) -
History Marginalization Improves Forecasting in Variational Recurrent Neural Networks
por: Qiu, Chen, et al.
Publicado: (2021) -
Improved Neural Networks with Random Weights for Short-Term Load Forecasting
por: Lang, Kun, et al.
Publicado: (2015)