Cargando…

Organic–inorganic nanocrystal reductase to promote green asymmetric synthesis

An acetophenone reductase from Geotrichum candidum (GcAPRD) was immobilized by the organic–inorganic nanocrystal method. The GcAPRD nanocrystal presented improved stability and recyclability compared with those of the free GcAPRD. Moreover, the GcAPRD nanocrystal reduced broad kinds of ketones with...

Descripción completa

Detalles Bibliográficos
Autores principales: T.sriwong, Kotchakorn, Koesoema, Afifa Ayu, Matsuda, Tomoko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056328/
https://www.ncbi.nlm.nih.gov/pubmed/35516042
http://dx.doi.org/10.1039/d0ra03160g
_version_ 1784697612836798464
author T.sriwong, Kotchakorn
Koesoema, Afifa Ayu
Matsuda, Tomoko
author_facet T.sriwong, Kotchakorn
Koesoema, Afifa Ayu
Matsuda, Tomoko
author_sort T.sriwong, Kotchakorn
collection PubMed
description An acetophenone reductase from Geotrichum candidum (GcAPRD) was immobilized by the organic–inorganic nanocrystal method. The GcAPRD nanocrystal presented improved stability and recyclability compared with those of the free GcAPRD. Moreover, the GcAPRD nanocrystal reduced broad kinds of ketones with excellent enantioselectivities to produce beneficial chiral alcohols such as (S)-1-(3′,4′-dichlorophenyl)ethanol with >99% yield and >99% ee. The robust and versatile properties of the GcAPRD nanocrystal demonstrated an approach to promote green asymmetric synthesis and sustainable chemistry.
format Online
Article
Text
id pubmed-9056328
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90563282022-05-04 Organic–inorganic nanocrystal reductase to promote green asymmetric synthesis T.sriwong, Kotchakorn Koesoema, Afifa Ayu Matsuda, Tomoko RSC Adv Chemistry An acetophenone reductase from Geotrichum candidum (GcAPRD) was immobilized by the organic–inorganic nanocrystal method. The GcAPRD nanocrystal presented improved stability and recyclability compared with those of the free GcAPRD. Moreover, the GcAPRD nanocrystal reduced broad kinds of ketones with excellent enantioselectivities to produce beneficial chiral alcohols such as (S)-1-(3′,4′-dichlorophenyl)ethanol with >99% yield and >99% ee. The robust and versatile properties of the GcAPRD nanocrystal demonstrated an approach to promote green asymmetric synthesis and sustainable chemistry. The Royal Society of Chemistry 2020-08-20 /pmc/articles/PMC9056328/ /pubmed/35516042 http://dx.doi.org/10.1039/d0ra03160g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
T.sriwong, Kotchakorn
Koesoema, Afifa Ayu
Matsuda, Tomoko
Organic–inorganic nanocrystal reductase to promote green asymmetric synthesis
title Organic–inorganic nanocrystal reductase to promote green asymmetric synthesis
title_full Organic–inorganic nanocrystal reductase to promote green asymmetric synthesis
title_fullStr Organic–inorganic nanocrystal reductase to promote green asymmetric synthesis
title_full_unstemmed Organic–inorganic nanocrystal reductase to promote green asymmetric synthesis
title_short Organic–inorganic nanocrystal reductase to promote green asymmetric synthesis
title_sort organic–inorganic nanocrystal reductase to promote green asymmetric synthesis
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056328/
https://www.ncbi.nlm.nih.gov/pubmed/35516042
http://dx.doi.org/10.1039/d0ra03160g
work_keys_str_mv AT tsriwongkotchakorn organicinorganicnanocrystalreductasetopromotegreenasymmetricsynthesis
AT koesoemaafifaayu organicinorganicnanocrystalreductasetopromotegreenasymmetricsynthesis
AT matsudatomoko organicinorganicnanocrystalreductasetopromotegreenasymmetricsynthesis