Cargando…

Direct C–H photoarylation of diazines using aryldiazonium salts and visible-light

In this study, direct C–H photoarylation of pyrazine with aryldiazonium salts under visible-light irradiation (blue-LEDs) is described, and additional examples including photoarylations of pyrimidine and pyridazine are also covered. The corresponding aryl-diazines were prepared in yields up to 84% o...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Rodrigo C., Villela, Lucas F., Brocksom, Timothy J., de Oliveira, Kleber T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056432/
https://www.ncbi.nlm.nih.gov/pubmed/35520669
http://dx.doi.org/10.1039/d0ra06876d
Descripción
Sumario:In this study, direct C–H photoarylation of pyrazine with aryldiazonium salts under visible-light irradiation (blue-LEDs) is described, and additional examples including photoarylations of pyrimidine and pyridazine are also covered. The corresponding aryl-diazines were prepared in yields up to 84% only by mixing and irradiating the reaction with no need for an additional photocatalyst. We demonstrate the efficacy of this protocol by the scope with electron-donor, -neutral, and -withdrawing groups attached at the ortho, meta, and para positions of the aryldiazonium salts; the results are better than those reported for ruthenium-complex mediated photoarylations. Additionally, we demonstrate the robustness of this methodology with a 5 mmol scaled-up experiment. Mechanistic studies were carried out giving support to the proposal of a photocatalyzed approach by an electron donor–acceptor (EDA) complex, also highlighting the crucial role that solvents play in the formation of the EDA complex.