Cargando…

Impact of three co-occurring physical ecosystem engineers on soil Collembola communities

The interplay between organisms with their abiotic environment may have profound effects within ecological networks, but are still poorly understood. Soil physical ecosystem engineers (EEs) modify the abiotic environment, thereby potentially affecting the distribution of other species, such as micro...

Descripción completa

Detalles Bibliográficos
Autores principales: Lagendijk, D. D. G., Cueva-Arias, D., Van Oosten, A. R., Berg, M. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056452/
https://www.ncbi.nlm.nih.gov/pubmed/35391556
http://dx.doi.org/10.1007/s00442-022-05152-5
Descripción
Sumario:The interplay between organisms with their abiotic environment may have profound effects within ecological networks, but are still poorly understood. Soil physical ecosystem engineers (EEs) modify the abiotic environment, thereby potentially affecting the distribution of other species, such as microarthropods. We focus on three co-occurring physical EEs (i.e. cattle, vegetation, macrodetritivore) known for their profound effect on soil properties (e.g. pore volume, microclimate, litter thickness). We determined their effects on Collembola community composition and life-form strategy (a proxy for vertical distribution in soil) in a European salt marsh. Soil cores were collected in grazed (compacted soil, under short and tall vegetation) and non-grazed areas (decompacted soil, under short and tall vegetation), their pore structure analysed using X-ray computed tomography, after which Collembola were extracted. Collembola species richness was lower in grazed sites, but abundances were not affected by soil compaction or vegetation height. Community composition differed between ungrazed sites with short vegetation and the other treatments, due to a greater dominance of epigeic Collembola and lower abundance of euedaphic species in this treatment. We found that the three co-occurring EEs and their interactions modify the physical environment of soil fauna, particularly through changes in soil porosity and availability of litter. This alters the relative abundance of Collembola life-forms, and thus the community composition within the soil. As Collembola are known to play a crucial role in decomposition processes, these compositional changes in litter and soil layers are expected to affect ecosystem processes and functioning. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00442-022-05152-5.