Cargando…
Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties
Using density functional theory, we investigate a novel two-dimensional silicon bismotide (SiBi) that has a layered GaSe-like crystal structure. Ab initio molecular dynamic simulations and phonon dispersion calculations suggest its good thermal and dynamical stability. The SiBi monolayer is a semico...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056497/ https://www.ncbi.nlm.nih.gov/pubmed/35518134 http://dx.doi.org/10.1039/d0ra05026a |
_version_ | 1784697675911790592 |
---|---|
author | Bafekry, Asadollah Shojaei, Fazel Obeid, Mohammed M. Ghergherehchi, Mitra Nguyen, C. Oskouian, Mohammad |
author_facet | Bafekry, Asadollah Shojaei, Fazel Obeid, Mohammed M. Ghergherehchi, Mitra Nguyen, C. Oskouian, Mohammad |
author_sort | Bafekry, Asadollah |
collection | PubMed |
description | Using density functional theory, we investigate a novel two-dimensional silicon bismotide (SiBi) that has a layered GaSe-like crystal structure. Ab initio molecular dynamic simulations and phonon dispersion calculations suggest its good thermal and dynamical stability. The SiBi monolayer is a semiconductor with a narrow indirect bandgap of 0.4 eV. Our results show that the indirect bandgap decreases as the number of layers increases, and when the number of layers is more than six layers, direct-to-indirect bandgap switching occurs. The SiBi bilayer is found to be very sensitive to an E-field. The bandgap monotonically decreases in response to uniaxial and biaxial compressive strain, and reaches 0.2 eV at 5%, while at 6%, the semiconductor becomes a metal. For both uniaxial and biaxial tensile strains, the material remains a semiconductor and indirect-to-direct bandgap transition occurs at a strain of 3%. Compared to a SiBi monolayer with a layer thickness of 4.89 Å, the bandgap decreases with either increasing or decreasing layer thickness, and at a thicknesses of 4.59 to 5.01 Å, the semiconductor-to-metal transition happens. In addition, under pressure, the semiconducting character of the SiBi bilayer with a 0.25 eV direct bandgap is preserved. Our results demonstrate that the SiBi nanosheet is a promising candidate for designing high-speed low-dissipation devices. |
format | Online Article Text |
id | pubmed-9056497 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90564972022-05-04 Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties Bafekry, Asadollah Shojaei, Fazel Obeid, Mohammed M. Ghergherehchi, Mitra Nguyen, C. Oskouian, Mohammad RSC Adv Chemistry Using density functional theory, we investigate a novel two-dimensional silicon bismotide (SiBi) that has a layered GaSe-like crystal structure. Ab initio molecular dynamic simulations and phonon dispersion calculations suggest its good thermal and dynamical stability. The SiBi monolayer is a semiconductor with a narrow indirect bandgap of 0.4 eV. Our results show that the indirect bandgap decreases as the number of layers increases, and when the number of layers is more than six layers, direct-to-indirect bandgap switching occurs. The SiBi bilayer is found to be very sensitive to an E-field. The bandgap monotonically decreases in response to uniaxial and biaxial compressive strain, and reaches 0.2 eV at 5%, while at 6%, the semiconductor becomes a metal. For both uniaxial and biaxial tensile strains, the material remains a semiconductor and indirect-to-direct bandgap transition occurs at a strain of 3%. Compared to a SiBi monolayer with a layer thickness of 4.89 Å, the bandgap decreases with either increasing or decreasing layer thickness, and at a thicknesses of 4.59 to 5.01 Å, the semiconductor-to-metal transition happens. In addition, under pressure, the semiconducting character of the SiBi bilayer with a 0.25 eV direct bandgap is preserved. Our results demonstrate that the SiBi nanosheet is a promising candidate for designing high-speed low-dissipation devices. The Royal Society of Chemistry 2020-09-02 /pmc/articles/PMC9056497/ /pubmed/35518134 http://dx.doi.org/10.1039/d0ra05026a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Bafekry, Asadollah Shojaei, Fazel Obeid, Mohammed M. Ghergherehchi, Mitra Nguyen, C. Oskouian, Mohammad Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties |
title | Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties |
title_full | Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties |
title_fullStr | Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties |
title_full_unstemmed | Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties |
title_short | Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties |
title_sort | two-dimensional silicon bismotide (sibi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056497/ https://www.ncbi.nlm.nih.gov/pubmed/35518134 http://dx.doi.org/10.1039/d0ra05026a |
work_keys_str_mv | AT bafekryasadollah twodimensionalsiliconbismotidesibimonolayerwithahoneycomblikelatticefirstprinciplesstudyoftuningtheelectronicproperties AT shojaeifazel twodimensionalsiliconbismotidesibimonolayerwithahoneycomblikelatticefirstprinciplesstudyoftuningtheelectronicproperties AT obeidmohammedm twodimensionalsiliconbismotidesibimonolayerwithahoneycomblikelatticefirstprinciplesstudyoftuningtheelectronicproperties AT ghergherehchimitra twodimensionalsiliconbismotidesibimonolayerwithahoneycomblikelatticefirstprinciplesstudyoftuningtheelectronicproperties AT nguyenc twodimensionalsiliconbismotidesibimonolayerwithahoneycomblikelatticefirstprinciplesstudyoftuningtheelectronicproperties AT oskouianmohammad twodimensionalsiliconbismotidesibimonolayerwithahoneycomblikelatticefirstprinciplesstudyoftuningtheelectronicproperties |