Cargando…
Deep parameter-free attention hashing for image retrieval
Deep hashing method is widely applied in the field of image retrieval because of its advantages of low storage consumption and fast retrieval speed. There is a defect of insufficiency feature extraction when existing deep hashing method uses the convolutional neural network (CNN) to extract images s...
Autores principales: | Yang, Wenjing, Wang, Liejun, Cheng, Shuli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056524/ https://www.ncbi.nlm.nih.gov/pubmed/35490175 http://dx.doi.org/10.1038/s41598-022-11217-5 |
Ejemplares similares
-
Deep Semantic-Preserving Reconstruction Hashing for Unsupervised Cross-Modal Retrieval
por: Cheng, Shuli, et al.
Publicado: (2020) -
Dual Attention Triplet Hashing Network for Image Retrieval
por: Jiang, Zhukai, et al.
Publicado: (2021) -
An Efficient Supervised Deep Hashing Method for Image Retrieval
por: Hussain, Abid, et al.
Publicado: (2022) -
Deep supervised hashing for gait retrieval
por: Sayeed, Shohel, et al.
Publicado: (2022) -
Composed query image retrieval based on triangle area triple loss function and combining CNN with transformer
por: Zhang, Zhiwei, et al.
Publicado: (2022)