Cargando…
1,4-Dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecular systems: electronic devices with possible applications in molecular electronics
A theoretical study of the electronic transport properties of the 1,4-dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecules coupled to two metal contacts is carried out. The tight binding Hamiltonian approximation is applied to describe each of the molecular systems using the r...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056573/ https://www.ncbi.nlm.nih.gov/pubmed/35518157 http://dx.doi.org/10.1039/d0ra05605g |
_version_ | 1784697694206296064 |
---|---|
author | Ojeda, J. H. Piracón Muñoz, Lina K. Guerra Pinzón, Julian A. Gómez Castaño, Jovanny A. |
author_facet | Ojeda, J. H. Piracón Muñoz, Lina K. Guerra Pinzón, Julian A. Gómez Castaño, Jovanny A. |
author_sort | Ojeda, J. H. |
collection | PubMed |
description | A theoretical study of the electronic transport properties of the 1,4-dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecules coupled to two metal contacts is carried out. The tight binding Hamiltonian approximation is applied to describe each of the molecular systems using the real space renormalization analytical method. Using Green's functions with the Landauer formalism, the transmission probability, current, shot noise and Fano factor of these three systems are calculated and analyzed in order to identify their behavior as insulators, semiconductors, or conductors, and their possible applications, such as quantum wires. The theoretical results are compared with experimental results that have been reported in the literature. The results indicate a high concordance between the results obtained by the proposed method and the experimental results. |
format | Online Article Text |
id | pubmed-9056573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90565732022-05-04 1,4-Dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecular systems: electronic devices with possible applications in molecular electronics Ojeda, J. H. Piracón Muñoz, Lina K. Guerra Pinzón, Julian A. Gómez Castaño, Jovanny A. RSC Adv Chemistry A theoretical study of the electronic transport properties of the 1,4-dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecules coupled to two metal contacts is carried out. The tight binding Hamiltonian approximation is applied to describe each of the molecular systems using the real space renormalization analytical method. Using Green's functions with the Landauer formalism, the transmission probability, current, shot noise and Fano factor of these three systems are calculated and analyzed in order to identify their behavior as insulators, semiconductors, or conductors, and their possible applications, such as quantum wires. The theoretical results are compared with experimental results that have been reported in the literature. The results indicate a high concordance between the results obtained by the proposed method and the experimental results. The Royal Society of Chemistry 2020-08-28 /pmc/articles/PMC9056573/ /pubmed/35518157 http://dx.doi.org/10.1039/d0ra05605g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Ojeda, J. H. Piracón Muñoz, Lina K. Guerra Pinzón, Julian A. Gómez Castaño, Jovanny A. 1,4-Dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecular systems: electronic devices with possible applications in molecular electronics |
title | 1,4-Dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecular systems: electronic devices with possible applications in molecular electronics |
title_full | 1,4-Dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecular systems: electronic devices with possible applications in molecular electronics |
title_fullStr | 1,4-Dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecular systems: electronic devices with possible applications in molecular electronics |
title_full_unstemmed | 1,4-Dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecular systems: electronic devices with possible applications in molecular electronics |
title_short | 1,4-Dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecular systems: electronic devices with possible applications in molecular electronics |
title_sort | 1,4-dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecular systems: electronic devices with possible applications in molecular electronics |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056573/ https://www.ncbi.nlm.nih.gov/pubmed/35518157 http://dx.doi.org/10.1039/d0ra05605g |
work_keys_str_mv | AT ojedajh 14dithiolbenzene14dimethanediolbenzeneand4thioacetylbiphenylmolecularsystemselectronicdeviceswithpossibleapplicationsinmolecularelectronics AT piraconmunozlinak 14dithiolbenzene14dimethanediolbenzeneand4thioacetylbiphenylmolecularsystemselectronicdeviceswithpossibleapplicationsinmolecularelectronics AT guerrapinzonjuliana 14dithiolbenzene14dimethanediolbenzeneand4thioacetylbiphenylmolecularsystemselectronicdeviceswithpossibleapplicationsinmolecularelectronics AT gomezcastanojovannya 14dithiolbenzene14dimethanediolbenzeneand4thioacetylbiphenylmolecularsystemselectronicdeviceswithpossibleapplicationsinmolecularelectronics |