Cargando…
Electron configuration-based neural network model to predict physicochemical properties of inorganic compounds
Registration, evaluation, and authorization of chemicals (REACH), the regulation of chemicals in use, imposes the characterization and report of the physicochemical properties of compounds. To cope with the financial burden of the experiments, the use of computational models is permitted for predict...
Autor principal: | Shin, Hyun Kil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056678/ https://www.ncbi.nlm.nih.gov/pubmed/35515036 http://dx.doi.org/10.1039/d0ra05873d |
Ejemplares similares
-
Topological Distance-Based Electron Interaction Tensor
to Apply a Convolutional Neural Network on Drug-like Compounds
por: Shin, Hyun Kil
Publicado: (2021) -
Predicting electronic structure properties of transition metal complexes with neural networks
por: Janet, Jon Paul, et al.
Publicado: (2017) -
Systematic exploration of the mechanical properties of 13 621 inorganic compounds
por: Chibani, Siwar, et al.
Publicado: (2019) -
A simple approach to hybrid inorganic–organic step-growth hydrogels with scalable control of physicochemical properties and biodegradability
por: Alves, F., et al.
Publicado: (2015) -
Physicochemical aspects of inorganic nanoparticles stabilized in N-vinyl caprolactam based microgels for various applications
por: Tahir, Fatima, et al.
Publicado: (2021)