Cargando…
Multimodal biological brain age prediction using magnetic resonance imaging and angiography with the identification of predictive regions
Biological brain age predicted using machine learning models based on high‐resolution imaging data has been suggested as a potential biomarker for neurological and cerebrovascular diseases. In this work, we aimed to develop deep learning models to predict the biological brain age using structural ma...
Autores principales: | Mouches, Pauline, Wilms, Matthias, Rajashekar, Deepthi, Langner, Sönke, Forkert, Nils D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057090/ https://www.ncbi.nlm.nih.gov/pubmed/35138012 http://dx.doi.org/10.1002/hbm.25805 |
Ejemplares similares
-
Multimodal brain age prediction fusing morphometric and imaging data and association with cardiovascular risk factors
por: Mouches, Pauline, et al.
Publicado: (2022) -
An exploratory causal analysis of the relationships between the brain age gap and cardiovascular risk factors
por: Mouches, Pauline, et al.
Publicado: (2022) -
High-resolution T2-FLAIR and non-contrast CT brain atlas of the elderly
por: Rajashekar, Deepthi, et al.
Publicado: (2020) -
Influence of cardiovascular risk-factors on morphological changes of cerebral arteries in healthy adults across the life span
por: Mouches, Pauline, et al.
Publicado: (2021) -
Using Machine Learning to Predict Dementia from Neuropsychiatric Symptom and Neuroimaging Data
por: Gill, Sascha, et al.
Publicado: (2020)