Cargando…
Attention module improves both performance and interpretability of four‐dimensional functional magnetic resonance imaging decoding neural network
Decoding brain cognitive states from neuroimaging signals is an important topic in neuroscience. In recent years, deep neural networks (DNNs) have been recruited for multiple brain state decoding and achieved good performance. However, the open question of how to interpret the DNN black box remains...
Autores principales: | Jiang, Zhoufan, Wang, Yanming, Shi, ChenWei, Wu, Yueyang, Hu, Rongjie, Chen, Shishuo, Hu, Sheng, Wang, Xiaoxiao, Qiu, Bensheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057093/ https://www.ncbi.nlm.nih.gov/pubmed/35212436 http://dx.doi.org/10.1002/hbm.25813 |
Ejemplares similares
-
Self-supervised pretraining improves the performance of classification of task functional magnetic resonance imaging
por: Shi, Chenwei, et al.
Publicado: (2023) -
Cerebellar Structural Abnormality in Autism Spectrum Disorder: A Magnetic Resonance Imaging Study
por: Lu, Qifang, et al.
Publicado: (2023) -
Decoding and mapping task states of the human brain via deep learning
por: Wang, Xiaoxiao, et al.
Publicado: (2019) -
Decoding attention control and selection in visual spatial attention
por: Hong, Xiangfei, et al.
Publicado: (2020) -
Fast construction of interpretable whole-brain decoders
por: Lee, Sangil, et al.
Publicado: (2022)