Cargando…
Mechanical behavior of SiNC layers on PDMS: effects of layer thickness, PDMS modulus, and SiNC surface functionality
Thin layers of nanomaterials on stretchable substrates have the potential to enable stretchable, bendable optoelectronic devices, wearable diagnostics, and more. Recently, our group reported on a novel method for finding the neo-Hookean coefficient of thin layers of silicon nanocrystals (SiNCs) on p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057323/ https://www.ncbi.nlm.nih.gov/pubmed/35518434 http://dx.doi.org/10.1039/d0ra06321e |
Sumario: | Thin layers of nanomaterials on stretchable substrates have the potential to enable stretchable, bendable optoelectronic devices, wearable diagnostics, and more. Recently, our group reported on a novel method for finding the neo-Hookean coefficient of thin layers of silicon nanocrystals (SiNCs) on polydimethylsiloxane (PDMS). Here we elaborate on that initial study by examining the effects of the SiNC layer thickness, PDMS neo-Hookean coefficient, and SiNC surface functionality on the neo-Hookean coefficient of the SiNC layers. We found that, while the layer thickness and PDMS neo-Hookean coefficient influence the behavior of the SiNC layers, layers of surface-functionalized SiNCs do not exhibit disparate behavior from layers of bare SiNCs. |
---|