Cargando…

Synthesis of FeO@SiO(2)–DNA core–shell engineered nanostructures for rapid adsorption of heavy metals in aqueous solutions

Creating novel and innovative nanostructures is a challenge, aiming to discover nanomaterials with promising properties for environmental remediation. In this study, the physicochemical and adsorption properties of a heterogeneous nanostructure are evaluated for the rapid removal of heavy metal ions...

Descripción completa

Detalles Bibliográficos
Autores principales: Patiño-Ruiz, David, Rehmann, Lars, Mehrvar, Mehrab, Quiñones-Bolaños, Edgar, Herrera, Adriana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057351/
https://www.ncbi.nlm.nih.gov/pubmed/35518424
http://dx.doi.org/10.1039/d0ra06743a
_version_ 1784697878898278400
author Patiño-Ruiz, David
Rehmann, Lars
Mehrvar, Mehrab
Quiñones-Bolaños, Edgar
Herrera, Adriana
author_facet Patiño-Ruiz, David
Rehmann, Lars
Mehrvar, Mehrab
Quiñones-Bolaños, Edgar
Herrera, Adriana
author_sort Patiño-Ruiz, David
collection PubMed
description Creating novel and innovative nanostructures is a challenge, aiming to discover nanomaterials with promising properties for environmental remediation. In this study, the physicochemical and adsorption properties of a heterogeneous nanostructure are evaluated for the rapid removal of heavy metal ions from aqueous solutions. Core–shell nanostructures are prepared using iron oxide cores and silica dioxide shells. The core is synthesized via the co-precipitation method and modified in situ with citric acid to grow a carboxyl layer. The shell was hydrolyzed/condensed and then functionalized with amine groups for ds-DNA condensation via electrostatic interaction. The characterization techniques revealed functional FeO@SiO(2)–DNA nanostructures with good crystallinity and superparamagnetic response (31.5 emu g(−1)). The predominant superparamagnetic nature is attributed to the citric acid coating. This improves the dispersion and stability of the magnetic cores through the reduction of the dipolar–dipolar interaction and the enhancement of the spin coordination. The rapid adsorption mechanism of FeO@SiO(2)–DNA was evaluated through the removal of Pb(ii), As(iii), and Hg(ii). A rapid adsorption rate is observed in the first 15 min, attributed to a heterogeneous chemisorption mechanism based on electrostatic interactions. FeO@SiO(2)–DNA shows higher adsorption efficiency of 69% for Pb(ii) removal compared to As(iii) (51%) and Hg(ii) (41%). The selectivity towards Pb(ii) is attributed to the similar acid nature to ds-DNA, where the ionic strength interaction provides good affinity and stability. The facile synthesis and rapid adsorption suggest a promising nanostructure for the remediation of water sources contaminated with heavy metal ions and can be extended to other complex molecules.
format Online
Article
Text
id pubmed-9057351
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90573512022-05-04 Synthesis of FeO@SiO(2)–DNA core–shell engineered nanostructures for rapid adsorption of heavy metals in aqueous solutions Patiño-Ruiz, David Rehmann, Lars Mehrvar, Mehrab Quiñones-Bolaños, Edgar Herrera, Adriana RSC Adv Chemistry Creating novel and innovative nanostructures is a challenge, aiming to discover nanomaterials with promising properties for environmental remediation. In this study, the physicochemical and adsorption properties of a heterogeneous nanostructure are evaluated for the rapid removal of heavy metal ions from aqueous solutions. Core–shell nanostructures are prepared using iron oxide cores and silica dioxide shells. The core is synthesized via the co-precipitation method and modified in situ with citric acid to grow a carboxyl layer. The shell was hydrolyzed/condensed and then functionalized with amine groups for ds-DNA condensation via electrostatic interaction. The characterization techniques revealed functional FeO@SiO(2)–DNA nanostructures with good crystallinity and superparamagnetic response (31.5 emu g(−1)). The predominant superparamagnetic nature is attributed to the citric acid coating. This improves the dispersion and stability of the magnetic cores through the reduction of the dipolar–dipolar interaction and the enhancement of the spin coordination. The rapid adsorption mechanism of FeO@SiO(2)–DNA was evaluated through the removal of Pb(ii), As(iii), and Hg(ii). A rapid adsorption rate is observed in the first 15 min, attributed to a heterogeneous chemisorption mechanism based on electrostatic interactions. FeO@SiO(2)–DNA shows higher adsorption efficiency of 69% for Pb(ii) removal compared to As(iii) (51%) and Hg(ii) (41%). The selectivity towards Pb(ii) is attributed to the similar acid nature to ds-DNA, where the ionic strength interaction provides good affinity and stability. The facile synthesis and rapid adsorption suggest a promising nanostructure for the remediation of water sources contaminated with heavy metal ions and can be extended to other complex molecules. The Royal Society of Chemistry 2020-10-27 /pmc/articles/PMC9057351/ /pubmed/35518424 http://dx.doi.org/10.1039/d0ra06743a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Patiño-Ruiz, David
Rehmann, Lars
Mehrvar, Mehrab
Quiñones-Bolaños, Edgar
Herrera, Adriana
Synthesis of FeO@SiO(2)–DNA core–shell engineered nanostructures for rapid adsorption of heavy metals in aqueous solutions
title Synthesis of FeO@SiO(2)–DNA core–shell engineered nanostructures for rapid adsorption of heavy metals in aqueous solutions
title_full Synthesis of FeO@SiO(2)–DNA core–shell engineered nanostructures for rapid adsorption of heavy metals in aqueous solutions
title_fullStr Synthesis of FeO@SiO(2)–DNA core–shell engineered nanostructures for rapid adsorption of heavy metals in aqueous solutions
title_full_unstemmed Synthesis of FeO@SiO(2)–DNA core–shell engineered nanostructures for rapid adsorption of heavy metals in aqueous solutions
title_short Synthesis of FeO@SiO(2)–DNA core–shell engineered nanostructures for rapid adsorption of heavy metals in aqueous solutions
title_sort synthesis of feo@sio(2)–dna core–shell engineered nanostructures for rapid adsorption of heavy metals in aqueous solutions
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057351/
https://www.ncbi.nlm.nih.gov/pubmed/35518424
http://dx.doi.org/10.1039/d0ra06743a
work_keys_str_mv AT patinoruizdavid synthesisoffeosio2dnacoreshellengineerednanostructuresforrapidadsorptionofheavymetalsinaqueoussolutions
AT rehmannlars synthesisoffeosio2dnacoreshellengineerednanostructuresforrapidadsorptionofheavymetalsinaqueoussolutions
AT mehrvarmehrab synthesisoffeosio2dnacoreshellengineerednanostructuresforrapidadsorptionofheavymetalsinaqueoussolutions
AT quinonesbolanosedgar synthesisoffeosio2dnacoreshellengineerednanostructuresforrapidadsorptionofheavymetalsinaqueoussolutions
AT herreraadriana synthesisoffeosio2dnacoreshellengineerednanostructuresforrapidadsorptionofheavymetalsinaqueoussolutions